City of Brookings
Standard Specifications
For
Sanitary Sewer Main Construction
(Brookings Municipal Utilities - BMU)

Revision Date: May 3, 2016

Brookings Municipal Utilities
525 Western Avenue
P.O. Box 588
Brookings, SD 57006-0588
(605) 692-6325
Table of Contents

1.0 GENERAL... 1
1.1 SCOPE OF WORK... 1
1.2 TERM OF GUARANTEE ... 1
1.3 CONTRACTOR LICENSE AND PERMITS .. 1
1.4 ELEVATION DATUM ... 2
1.5 PROJECT DESIGN CHANGES .. 2
1.6 QUALITY CONTROL AND SUBMITTALS .. 2
1.7 TRAFFIC CONTROL ... 3
1.8 ACCEPTANCE .. 3
1.9 CERTIFICATE OF SUBSTANTIAL COMPLETION ... 4

2.0 MATERIALS .. 6
2.1 MATERIAL INSPECTION ... 6
2.2 MATERIAL HANDLING & STORAGE ... 6
2.3 CITY FURNISHED MATERIALS & WATER AND SANITARY SEWER SERVICE TAPPING FEES .. 6
2.4 PIPE BEDDING ... 7
2.5 TRENCH STABILIZATION MATERIAL .. 7
2.6 ROAD TOPPING OR TRENCH REPLACEMENT MATERIAL ... 8
2.7 K-CRETE .. 8
2.8 SANITARY SEWER GRAVITY PIPE .. 8
2.9 SANITARY SEWER FORCE MAIN PIPE ... 9
2.10 TRACER WIRE AND TERMINAL BOXES FOR SANITARY SEWER FORCE MAIN 9
2.11 PIPE JOINT MATERIALS .. 9
2.12 PIPE COUPLING ... 9
2.13 CAPS AND PLUGS ... 9
2.14 SANITARY SEWER MANHOLE MATERIALS ... 10
2.15 SANITARY SEWER SERVICES .. 15
2.16 SANITARY SEWER SERVICE WYES .. 16
2.17 TAPPING SADDLES .. 16
2.18 PIPE INSULATION .. 16
2.19 ENCASEMENT PIPE, CASING SPACERS AND END SEALS 16
2.20 TEMPORARY SANITARY SEWER MAIN BYPASS PIPE ... 17

3.0 CONSTRUCTION REQUIREMENTS ... 18
3.1 ALIGNMENT AND GRADE .. 18
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.13</td>
<td>SANITARY SEWER MANHOLE</td>
</tr>
<tr>
<td>4.14</td>
<td>LINED SANITARY SEWER MANHOLE</td>
</tr>
<tr>
<td>4.15</td>
<td>INSIDE DROP ASSEMBLY FOR SANITARY SEWER MANHOLE</td>
</tr>
<tr>
<td>4.16</td>
<td>LINING EXISTING SANITARY SEWER MANHOLE</td>
</tr>
<tr>
<td>4.17</td>
<td>SANITARY SEWER SERVICE</td>
</tr>
<tr>
<td>4.18</td>
<td>SANITARY SEWER SERVICE RISER</td>
</tr>
<tr>
<td>4.19</td>
<td>SANITARY SEWER SERVICE CLEANOUT ASSEMBLY</td>
</tr>
<tr>
<td>4.20</td>
<td>SANITARY SEWER SERVICE RECONNECT</td>
</tr>
<tr>
<td>4.21</td>
<td>TEMPORARY SANITARY SEWER BYPASS SYSTEM</td>
</tr>
<tr>
<td>4.22</td>
<td>CASING PIPE VIA BORING (JACKING)</td>
</tr>
</tbody>
</table>
City of Brookings
Standard Specifications
For
Sanitary Sewer Main Construction

1.0 GENERAL

1.1 SCOPE OF WORK
The Contractor shall furnish all the necessary labor, materials, equipment, tools, and supplies that are necessary to install a complete sanitary sewer system, as shown on the plans, standard plates and/or called for in the specifications or its addenda.

1.2 TERM OF GUARANTEE
Corrective Period: The corrective period shall cover the contract as to workmanship and materials for a period of five (5) years in compliance with the City of Brookings ordinance "Excavating & Backfilling on Public Right-of-Way". The corrective period of five (5) years shall commence from the BMU determined Substantial Completion date.

Responsibility: The Contractor shall be held responsible for workmanship, materials, settling trenches or any other deficiencies in the sanitary sewer main system during the corrective period. The Contractor shall repair and/or replace all deficiencies in the sanitary sewer system during the five (5) year corrective period at no cost to the Owner. Any surface restoration costs incurred because of the repairing and/or replacing of deficiencies in the sanitary sewer system shall be borne by the Contractor.

1.3 CONTRACTOR LICENSE AND PERMITS
License: The Contractor shall be required to have any required licenses (sanitary sewer and water installation Contractor license or sanitary sewer and water installer license) for water/sewer installation or water/sewer repairing as stated in the South Dakota State Plumbing Code.

Excavation Permit: The Contractor shall obtain an “excavation permit” issued at no charge from the Brookings City Engineering Office before any water/sewer installation or water/sewer repairing will be allowed.

Dewatering Permit: The Contractor shall obtain any “dewatering permits” required from local, state or federal agencies. The discharge area must be prior approved by the Engineer before initiating the dewatering.
1.4 ELEVATION DATUM

The Project Designer shall utilize only a City Engineer approved NAVD 88 datum for elevation reference. The Project Designer shall bring elevation control to the project site, preferably a nearby fire hydrant. All elevations established on hydrants shall be on top of the “O” on open (facing nozzle) with a tolerance of 0.03’ or less. The City Engineer approved NAVD 88 datum and all project site elevation controls are to be noted on the plan sheets.

1.5 PROJECT DESIGN CHANGES

If the Owner or the Owners’ Designer make any project design changes after the sanitary sewer main, sanitary sewer apparatus or sanitary sewer services have been installed, any location or elevation changes required to meet BMU standards shall be at the Owners’ expense.

1.6 QUALITY CONTROL AND SUBMITTALS

Retesting of work required because of nonconformance to the specified requirements shall be performed by the same independent firm as per the instructions of the Engineer. Payment for retesting performed during the contract period and during the warranty period will be charged to and will be the responsibility of the Contractor.

The Contractor or Supplier may submit appropriate documentation to the BMU Engineer for any materials not listed in these specifications. This documentation must be provided no later than seven calendar days prior to bid opening.

Shop drawings and data shall be submitted for, but not be limited to, the following items:

- Sanitary sewer manholes, pipe, pipe fittings, bedding material, stabilization material, road topping material, and any other pertinent information concerning construction materials that the Engineer deems necessary for the review of the materials used on the project in accordance with the specifications and drawings.

- Sanitary sewer manhole shop drawings shall be submitted for each sanitary sewer manhole and shall indicate the sections to be used with sizes and heights. A drawing showing the profile of the sanitary sewer manhole must be submitted and shall be detailed to scale to show all segments of the sanitary sewer manhole in a profile view.

The Contractor shall submit the number of copies that the contract requires plus one copy which the Engineer will retain. The Contractor shall obtain shop drawing approval before any of the work related to that material is performed.

If a Temporary Sanitary Sewer Bypass System is deemed necessary by the Contractor or the Engineer, the Contractor shall submit a comprehensive Temporary Sanitary Sewer Bypass Plan to the BMU Engineer either before or at the preconstruction meeting for BMU Engineer review.
1.7 TRAFFIC CONTROL
The Contractor shall barricade & maintain traffic control according to the manual on "Uniform Traffic Control Devices" for streets & highways whenever applicable. The Federal Highway Administrator approves this manual as the National Standard. Coordinate traffic control with City Hall for procedures, duration and approval.

1.8 ACCEPTANCE
Acceptance of the work shall be in accordance with the General Conditions.
1.9 CERTIFICATE OF SUBSTANTIAL COMPLETION

DATE OF ISSUANCE: ______________________

OWNER: ____ Brookings Municipal Utilities

CONTRACTOR: _________________________________

Project: _________________________________

BMU Engr No: ___________ BMU Acct No: ___________

Contract Dated: ___________ (applicable only to BMU funded projects)

This Certificate of Substantial Completion applies to all Work under the Contract Documents or to the following specified parts thereof:

To: ____ Brookings Municipal Utilities
 OWNER

And To: _________________________________
 CONTRACTOR

The Work to which this Certificate applies has been inspected by authorized Representatives of OWNER and the CONTRACTOR, and that Work is hereby declared to be substantially complete in accordance with the Contract Documents on:

BMU Determined Substantial Completion Date

Five (5) Years

Corrective Period in Years

Corrective Period Expiration Date
The CONTRACTOR accepts this Certificate of Substantial Completion and accepts corrective period responsibilities.

Date: ________________
 (Contractor)

Date: ________________
 (Company Name)

Date: ________________
 (Utility Operations Manager)
 Brookings Municipal Utilities
 (Company Name)

Date: ________________
 (Project Superintendent)
 Brookings Municipal Utilities
 (Company Name)

SUBSTANTIAL COMPLETION APPROVED

Date: ________________
 (Executive Vice President & General Manager)
 Brookings Municipal Utilities
 (Company Name)
2.0 MATERIALS

2.1 MATERIAL INSPECTION

Material Inspection: All pipe and appurtenances are subject to inspection by the Engineer. Material found to be defective due to manufacture or damage in shipment shall be rejected and removed from the job site.

Material Testing: The Engineer may perform tests to ensure conformance with the sanitary sewer standard. In case of failure of the pipe or appurtenance to comply with such specifications, responsibility for replacement of the defective materials becomes that of the Contractor or Manufacturer, even if piping and appurtenance has already been installed.

2.2 MATERIAL HANDLING & STORAGE

Material Handling: All pipe, fittings, and accessories shall be loaded and unloaded by a means to prevent shock or damage. Under no circumstances shall such material be dropped.

Material Storage: Materials, if stored, shall be kept safe from damage. The interior of all pipe, fittings, and other appurtenances shall be kept free from dirt or foreign matter at all times.

Pipe: Piping shall not be stacked higher than Manufacturers’ recommendations according to size. The bottom tier of piping shall be kept off the ground on timbers, rails, or concrete. Pipe in tiers shall be alternated: bell, plain end; plain end, bell. At least two rows of timbers shall be placed between tiers, and chocks shall be affixed to each timber in order to prevent movement. The timbers shall be large enough to prevent contact between the pipes in adjacent tiers.

Gaskets: Gaskets for push-on joints shall be stored in a cool location, out of direct sunlight. Gaskets shall not come in contact with petroleum products. Gaskets shall be used on a first-in, first-out basis.

2.3 CITY FURNISHED MATERIALS & WATER AND SANITARY SEWER SERVICE TAPPING FEES

City Furnished Items: The City shall furnish and the Contractor shall install the following items, unless otherwise stated in the Bid Form: The City shall furnish hydrants, valves and valve boxes for the operation of City water mains in public right-of-ways, but will not furnish private hydrants and valves for private businesses or property Owners.

Hydrants: Hydrants, hydrant extensions (if required), gaskets, and bolts will be furnished by the City and installed by the Contractor. All hydrant leads shall be installed with a valve for hydrant isolation.

Valves & Valve Boxes: Valves, gaskets, bolts, valve box adaptors, and valve boxes with metallic inserts which have a cast iron drop cover marked "WATER" will be furnished by the City and installed by the Contractor.
Water Service Tapping Fees & Corporations: After the Contractor pays the water tapping fee, the City shall furnish & install all corporations with saddle up to and including 2-inch corporations. A water service 2-inch or larger shall require prior Utility approval.

- 1-inch water tapping fee: $204.00
- 1 1/2-inch water tapping fee: $279.00
- 2-inch water tapping fee: $407.00

Curb Stops: All curb stops shall be furnished and installed by the Contractor.

Sanitary Sewer Service Tapping Fees: After the Contractor pays the sanitary sewer tapping fee, the City shall furnish & install inserta tees or saddles for making sanitary sewer taps. If the Contractor installs an in-line wye (preferred), inserta tee, or a saddle, then a tapping fee will not be required.

- 4-inch & 6-inch sanitary sewer tapping fee: $110.00

2.4 PIPE BEDDING

Pearock: In ideal trench conditions, the Contractor shall use pearock for pipe bedding conforming to the following sieve analysis:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percentage by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8-inch</td>
<td>95% to 100%</td>
</tr>
<tr>
<td>#4</td>
<td>10% to 90%</td>
</tr>
<tr>
<td>#8</td>
<td>0% to 30%</td>
</tr>
<tr>
<td>#40</td>
<td>0% to 4%</td>
</tr>
</tbody>
</table>

1/4" x 3/4" Angular Crushed Rock: When trench conditions are less than ideal, or if directed by the BMU Engineer’s Representative, the Contractor shall use 1/4" x 3/4" clean angular crushed rock for pipe bedding, with the following minimum percentage gradation requirements.

- 85-percent passing 3/4-inch sieve
- 85-percent retained on the #4 sieve and well graded.

2.5 TRENCH STABILIZATION MATERIAL

3/4-inch to 4-inch Crushed Angular: In poor trench conditions, or if directed by the BMU Engineer’s Representative, the Contractor shall be required to use trench stabilization consisting of 3/4-inch to 4-inch crushed angular, well-graded material. Larger crushed angular material may be required if deemed necessary by the BMU Engineer’s Representative to stabilize the bottom of the trench. The use of trench stabilization material will not eliminate the need for pipe bedding material.
2.6 ROAD TOPPING OR TRENCH REPLACEMENT MATERIAL

Trench replacement in developed streets, or if there is a deficiency due to a rejection of a part thereof, shall be 3/4-inch crushed gravel with a soil mortar or binder, unless otherwise directed. The crushed gravel shall conform to the South Dakota Department of Transportation Specifications, Section 882 “Aggregates for Granular Bases and Surfacing”. The 3/4-inch crushed gravel, unless otherwise directed, shall conform to the following sieve analysis:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percentage by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-inch</td>
<td>100%</td>
</tr>
<tr>
<td>3/4-inch</td>
<td>80% to 100%</td>
</tr>
<tr>
<td>1/2-inch</td>
<td>68% to 91%</td>
</tr>
<tr>
<td>#4</td>
<td>46% to 70%</td>
</tr>
<tr>
<td>#8</td>
<td>34% to 58%</td>
</tr>
<tr>
<td>#40</td>
<td>13% to 35%</td>
</tr>
<tr>
<td>#200</td>
<td>3% to 12%</td>
</tr>
</tbody>
</table>

2.7 K-CRETE

K-Crete shall be a controlled low strength concrete that is highly flowable without segregation.

2.8 SANITARY SEWER GRAVITY PIPE

Polyvinyl Chloride (PVC) Sanitary Sewer Pipe and Fittings:

Nominal Depth. PVC pipe 15-inches in diameter or smaller shall meet the requirements of ASTM D-3034, Type PSM, SDR 35 minimum, for depths 16-feet deep and less. PVC pipe 18-inches through 27-inches in diameter shall meet the requirements of ASTM F-679, minimum wall thickness T-1. The pipe shall be made of PVC plastic having a cell classification of 12454-B or 12454-C or 12364-C or 13364-B.

Sanitary sewer service pipe, wyes, and bends installed at depths greater than 14-feet shall be SDR 26.

Excessive Depth, Sanitary Sewer Service Risers, Directional Boring & Hole-Hogging Sanitary Sewer Services. PVC pipe 15-inches in diameter or smaller shall meet the requirements of ASTM D-3034, Type PSM, SDR 26, for pipe depths greater than 16-feet. ASTM D-3034, Type PSM, SDR 26 piping shall also be required at all depths for directional boring or hole-hogging; and for all sanitary sewer service riser materials up to nominal depth virgin ground.

30-Inch Pipe & Larger. Polyvinyl Chloride (PVC) Pipe and Fittings, AWWA C905, PVC pipe, 30-inches in diameter and greater, shall meet the requirements of AWWA C905, dimension ratio (DR) 32.5. All pipes shall have the same outside diameter as ductile iron pipe.

Schedule 40 Sanitary Sewer Service. Schedule 40 PVC shall be required for sanitary sewer services where the water service is in the same trench and the water service is not shelved above the sanitary sewer service.
Elevated Pipe Over Manhole Excavation (Inside Manhole Drop). Piping outside of manholes which have inside drops or are elevated above virgin ground shall be ASTM D-2241 SDR-21 Class 200 PSI PVC Pressure Pipe from the manhole to 5-feet (min) onto virgin soil.

The transition pipe coupling from Class 200 PSI PVC to ASTM 3034 shall be a PVC DWX X PSM ASTM 3034 by GPK Products Inc. or prebid BMU Engineer approved equal.

2.9 SANITARY SEWER FORCE MAIN PIPE

Polyvinyl Chloride (PVC) Sanitary Sewer Main: All pipe for sanitary sewer pressure piping (force mains) shall conform to the City of Brookings Standard Specifications for Water Main.

2.10 TRACER WIRE AND TERMINAL BOXES FOR SANITARY SEWER FORCE MAIN

Tracer Wire: Sanitary sewer force main tracer wire shall be in accordance with the supplemental specifications for Water Main Tracer Wire; with the exception that the tracer wire color shall be green. The sanitary sewer force main tracer wire shall also conform to the Standard Plate for sanitary sewer force main tracer wire.

Terminal Box: Tracer wire terminal box shall include a terminal block, cast iron collar and lockable lid. The tracer wire terminal boxes shall be placed at no more than 1,000-feet apart from one another or as specified on the plan notes or drawings.

2.11 PIPE JOINT MATERIALS

Polyvinyl Chloride (PVC) Sanitary Sewer Pipe: PVC Sanitary Sewer Pipe shall have a flexible elastomeric seal (O-ring or rubber sealing elastomeric gasket joint), and conform to the latest revisions of ASTM D3212. Solvent cement joints will not be allowed for sanitary sewer pipe and fittings.

2.12 PIPE COUPLING

Clamp style pipe couplings are typically not allowed and must be prebid BMU Engineer approved. All couplings shall bear the Manufacturer’s identifying mark and size. Reducing couplings shall not be allowed.

Acceptable Manufacturers are: Strong Back RC Series Repair Coupling as manufactured by Fernco Inc. or prebid BMU Engineer approved equal.

2.13 CAPS AND PLUGS

PVC caps and plugs shall be gasketed or solvent weld.
2.14 SANITARY SEWER MANHOLE MATERIALS

Precast Sanitary Sewer Manholes: Precast concrete sanitary sewer manholes shall conform to ASTM Designation C478 with all current revisions. The inside diameter shall be 48-inches unless otherwise stated in the plans or specifications. Sanitary sewer manholes shall be a minimum diameter of 60-inches when either the influent or effluent pipes are 18-inches and greater. The wall thickness shall be a minimum of 5-inches with one cage reinforcing with a minimum of 0.12-square inches of reinforcement per lineal foot of wall. The upper section of the sanitary sewer manhole shall be a special precast cone made expressly for this purpose providing a 27-inch or 24-inch diameter opening at the top. The cone section shall be concentric, not eccentric (offset). All sanitary sewer manholes shall be constructed without steps or ladders. Upon request from BMU, the Contractor and/or supplier shall supply BMU with a test report from an independent testing laboratory showing compliance with this specification.

O-ring gaskets shall be Tylox Super Seal gasket as manufactured by Hamilton Kent, or a continuous butyl rubber rope gasket shall be provided for constructing watertight sanitary sewer manhole joints. The butyl rubber rope gasket shall conform to or exceed all requirements of Federal Specification SS-S-210A and AASHTO M-198.

Lift holes shall not extend through the sanitary sewer manhole walls on 48-inch diameter sanitary sewer manholes. Lift holes shall be filled with non-shrink grout. Non-shrink grout shall conform to the following requirements:

Premixed compound consisting of no-metallic aggregate, cement, water reducing, and plasticizing agents; capable of developing minimum compressive strength of 2,400-psi in 48-hours and 7,000-psi in 28-days. Approved Manufacturers are:

- “Supreme Grout” – by Hanson Pipe and Products
- “Crystex” – by L & M Construction Chemicals
- “588 Non-Metallic, Nonshrink Grout” – by W.R. Meadows
- “Master Flow 713” – by Master Builders
- “Songrout” – by Sonneborn
- “Five Star Grout” – U.S. Grout Corp.

or prebid BMU Engineer approved equal.

On sanitary sewer manholes where the lift holes extend through the wall sections, a lift hole plug as manufactured by Press Seal Corporation or prebid BMU Engineer approved equal and non-shrink grout shall be installed at each lift hole.

Cast-in-Place (Doghouse) Base Section: Cast in place sanitary sewer manhole base sections (doghouse) are not considered watertight and are not allowed unless prior prebid BMU Engineer approval has been obtained.

Concrete used for poured sanitary sewer manhole bases, pipe cradles, or other monolithically poured structures shall conform to the requirements of Class M6 Section 462 of the “Standard Specifications for Roads and Bridges of the South Dakota Department of Transportation”.
Water Stops: Water stops for the sanitary sewer manhole base and wall sections shall conform to the following requirements:

Polyvinyl Chloride: Federal Specifications CRD-D-572 W.R. Acceptable Manufacturers are: Meadows Inc.; B.F. Goodrich Company; Progress Unlimited or prebid BMU Engineer approved equal.

Construction Joints: Use flat profile mechanical ribbed ends 7-inches wide, 5/16-inch minimum thickness.

Expansion Joints: Use split center bulb with mechanical ribbed ends 9-inches wide, 1/2-inch minimum thickness.

Use on all new pours.

Reinforcement Bars: Reinforcement bars for sanitary sewer manholes shall be structural grade, manufactured by the open hearth process from new billets. All bars shall be deformed and Grade 60.

Sanitary Sewer Manhole Liners: HDPE sanitary sewer manhole liners shall be used on sanitary sewer manholes which are required to be lined. PVC T-Lock liner will be allowed on some structures where it is determined by the BMU Engineer to be acceptable. Specifications for the PVC T-Lock liner shall be supplied for each individual project. The sanitary sewer manhole liner specifications shall apply to PVC T-Lock liner where applicable when specified.

Acceptable sanitary sewer manhole liner Manufacturers are: GSE Studliner as manufactured by GSE Lining Technologies, Inc., AGRU Sure-Grip as manufactured by AGRU America or prebid BMU Engineer approved equal.

The sanitary sewer manhole liner specified in this section shall be furnished by a Manufacturer who is fully experienced, reputable, and qualified in the manufacturing of the materials and who has in their employment a full-time field service representative with at least five years field experience. The sanitary sewer manhole liner shall be designed, constructed, and installed using techniques recommended by the Manufacturer.

The Manufacturer of the lining shall attest to the successful use of its product as a lining for sanitary sewer pipes, sanitary sewer manholes or pump stations in sewage conditions, or other chemical environments recognized as corrosive or otherwise detrimental to concrete.

Materials and Dimensions: The material used in the embedment liner and in all welding strips shall be a made from 97-98 percent virgin high-density polyethylene and 2-3 percent carbon black or pigmentation for the purpose of an otherwise specified color. Plasticizers shall not be added to the resin formulation. The material color shall be yellow, white, or off-white. Dark colors will not be acceptable.
Embedment sheets for field installation shall be produced in rolls that are a minimum of 6.5-feet (2-m) in width with 2.0-mm thickness for precast concrete pipe and sanitary sewer manholes.

Locking studs of the same material as that of the liner shall be integrally extruded with the sheet and have a minimum height of 0.40-inches (10-mm). The maximum distance between studs shall be 2.127-inches. A minimum of 39 studs per square foot shall be installed on the liner.

Liner Physical Properties: All plastic embedment sheets and welding strips shall have the following physical properties when tested in accordance with the following table.

Nominal Properties for Sanitary sewer manhole Liner

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness (min)</td>
<td>ASTM D 751</td>
<td>+/- 10%</td>
</tr>
<tr>
<td>Density g/cm³ (min)</td>
<td>DIN53479 / ASTM D 792</td>
<td>0.94</td>
</tr>
<tr>
<td>Tensile Properties</td>
<td>DIN53455 / ASTM D 638</td>
<td></td>
</tr>
<tr>
<td>Tensile Strength at Yield, lb/in² (min)</td>
<td></td>
<td>2,200</td>
</tr>
<tr>
<td>Tensile Elongation at Break, % (min)</td>
<td></td>
<td>600</td>
</tr>
<tr>
<td>Tensile Strength at Break, lb/in² (min)</td>
<td></td>
<td>3,600</td>
</tr>
<tr>
<td>Carbon Black Content, % (max)</td>
<td>ASTM D 1603</td>
<td>2-3</td>
</tr>
<tr>
<td>Dimensional Stability, %</td>
<td>DIN 53515</td>
<td>+/- 2</td>
</tr>
<tr>
<td>Linear Coefficient, in/in²/°C</td>
<td>ASTM D 696</td>
<td>1.2x10-4</td>
</tr>
<tr>
<td>Service Temperature</td>
<td></td>
<td>-70 to 176°F</td>
</tr>
<tr>
<td>Stud Pull Out Strength (min)</td>
<td></td>
<td>>4,300 psf</td>
</tr>
</tbody>
</table>

Embedment sheets and welding strips shall be free of cracks, cleavages, or other defects adversely affecting the protective characteristics of the material. The Engineer may reject any materials which may be defective.

Liner shall have demonstrated good chemical resistance via testing in accordance with EPA 9090.

Weld strips shall have good impact resistance, be flexible, and have an elongation sufficient to bridge up to 0.5-inch settling cracks, which may occur in the sanitary sewer manhole/pipe or in the joint after installation without damage to the strip. The lining shall be repairable at any time after installation in pipe, sanitary sewer manholes, or structures by methods approved and recommended by the Manufacturer.

Supply of Material: Sanitary sewer manhole/pipe embedment sheets shall be supplied as pipe size sheets or tubes fabricated by shop welding the basic size sheets together. For tank containment structures, either roll goods or prefabricated panels shall be supplied. Shop welds shall be made by a butt weld and fusing the sheets together by a thermal process such as an extrusion weld, fusion weld, or equal, so as to produce continuous welded seams. Specimens taken from shop welded seams shall show no cracks or separations and shall be tested in tension. Each specimen shall withstand a minimum shear strength of 60-percent of parent tensile yield strength.
During installation of the embedment sheet onto the forms, there shall be no cuts made within the liner for purposes such as strapping of sheet. If straps are utilized they shall be placed so that the straps are positioned between embedment studs. Sheets may be supplied in prefabricated, pipe sized tubular shaped sheets, ready to install onto the inner form, or roll goods having specified dimensions listed in the Materials and Dimensions section.

Joint strips for pipe seaming shall be approximately 4-inches wide with a minimum width of 3.75-inches. Thickness of joint strips shall be 3.0-mm.

HDPE adjusting rings shall be used on all lined sanitary sewer manholes. Concrete adjusting rings will not be allowed.

Bench and Inverts: All sanitary sewer manhole bench and inverts shall be manufacture pre-formed. Hand forming of sanitary sewer manhole bench and inverts will not be allowed on new sanitary sewer manholes, unless prior approved by the BMU Engineer. Bench and inverts shall be polyethylene preformed invert as manufactured by Royal Environmental Systems or prebid BMU Engineer approved equal. Bench and inverts may also be formed by using a bench and invert forming system as manufactured by Press Seal, A-Lok or prebid BMU Engineer approved equal.

Sanitary Sewer Manhole Castings: All frame and covers shall be constructed with gray iron having a tensile strength of not less than 35,000 pounds per square inch. The frame and covers shall conform to ASTM A48, Class 35B. The castings shall be heavy-duty type, designed for H20 loading conditions. The castings shall be free from cracks, blowholes, porosity, shrinkage distortion, or other imperfections. They shall be true to pattern and free from warpage. The frame and covers shall fit together in a satisfactory manner. Machined bearing surfaces shall be provided to prevent rocking and rattling. All covers shall be supplied with concealed pick holes as specified in the Standard Plates. All covers shall be letter marked “SEWER” (preferred) or “SANITARY SEWER.”

All covers shall be supplied with self-sealing type “T” gaskets as manufactured by Neenah Foundry Company or prebid BMU Engineer approved equal. The covers shall be delivered from the Manufacturer with pre-installed glued-in gaskets. The gasket shall be installed in a machined groove and be continuous around the perimeter. The gasket material shall be oil resistant Nitrile (60 DURO) glued in the groove, and have a maximum swell of 90-percent when tested in accordance with ASTM D471 using ASTM No. 3 oil. The glue shall be Lock-rite Black Max as manufactured by 3M Products.

Acceptable frame and lid Manufacturers are: Deeter 1260, East Jordan Ironworks 1205, Municipal Castings 301-7, or a Neenah Foundry R-1733. “SEWER” (preferred) or “SANITARY SEWER” shall be stamped on all lids. All frames specified above are 7-inch high.

Materials for Adjusting Rings: Only HDPE adjustment rings shall be allowed; concrete adjusting rings, bricks, blocks, or shimming devices will not be allowed for adjusting sanitary sewer manholes.
Sanitary Sewer Main Construction Specifications

Sealant for HDPE Adjusting Rings: Butyl Rubber Sealant in trowelable form shall be used. EZ-STIK #3 as manufactured by Pre-seal Gasket Corporation or prebid BMU Engineer approved equal. The material must meet or exceed the requirements of Federal Specification TT-S-001657, ASTM C-990 and AASHTO M-198.

HDPE Adjustment Rings: The adjusting rings shall be injection molded HDPE as manufactured by Ladtech, Inc. or prebid BMU Engineer approved equal. The adjusting rings shall be manufactured from polyethylene plastic as identified in ASTM D-1248 (Standard Specification for Polyethylene Plastic Molding and Extrusion Materials). Material properties shall be tested and qualified for usage in accordance with the ASTM Test Methods referenced in ASTM D-1248. The HDPE adjusting rings shall be manufactured utilizing the injection molding process as defined by SPE (Society of Plastic Engineers). The adjusting rings shall be tested to assure compliance with impact and loading requirements in accordance with the AASHTO Standard Specification for Highway Bridges. The adjusting rings shall meet and exceed the static load requirements of AASHTO highway Bridge Specification HS-25 (21,280 lbs). The rings must withstand 1,000,000 plus full load cycles of 10-seconds or less duration. The rings must perform without failure to a minimum of 150-percent of these load values. The adjusting rings shall be sized to conform to the standard 24-inch sanitary sewer manhole opening.

Sanitary Sewer Manhole Boots: Sanitary sewer manhole boots for connecting pipes to the sanitary sewer manholes shall be a watertight flexible connection meeting the requirements of ASTM C923. The rubber boots shall be supplied with two stainless steel clamps for attaching the boot to the pipe. A stainless steel “power sleeve” shall be supplied for connecting the boot to the sanitary sewer manhole. The boots shall be type PSX as manufactured by Press Seal Corporation or prebid BMU Engineer approved equal.

Sanitary Sewer Manhole External Frame Seal: Sanitary sewer manhole external frame seals shall be Wrapid Seal as manufactured by CANUSA-CPS, Infi-shield Uni-Band as manufactured by Sealing Systems Inc., I/I Barrier by Strike Products, and Internal/External Frame Seal as manufactured by Adaptor Inc., or prebid BMU Engineer approved equal. Infi-Sheild sanitary sewer manhole external frame seals manufactured by Sealing Systems will only be allowed in street pavement areas. The seal (for the Sealing Systems, Inc. product) shall be a continuous band made of high quality EPDM (Ethylene Propylene Diene Monomer) rubber with a minimum thickness of 60-mils. Each unit shall have a 2-inch wide mastic strip on the top and bottom of the band. The mastic shall be non-hardening butyl rubber sealant with a minimum thickness of 3/16-inch and shall seal to the cone/top of the sanitary sewer manhole section and over the flange of the casting.

Drop Sanitary Sewer Manholes: Outside drop sanitary sewer manholes are not allowed, only inside drops are allowed. Sanitary sewer manholes with inside drops shall be required if the drop exceeds 2.00' between 80% above the carrier pipe invert (bottom pipe invert) to the higher inflow invert.
The “Reliner Inside Drop System” as manufactured by Duran, Inc. or prebid BMU Engineer approved equal shall be used for all drop sanitary sewer manhole connections with an incoming pipe size of 12-inches or less. The “A” size drop bowl has a 12-inch wide receptor bowl with a 4-inch or 6-inch outlet. The 4-inch bowl outlet will service a 6-inch sanitary sewer main and the 6-inch bowl outlet will service an 8-inch sanitary sewer main. The “B” size drop bowl has an 18-inch wide receptor bowl with an 8-inch or 10-inch outlet. The 8-inch bowl outlet will service a 10-inch sanitary sewer main and the 10-inch bowl outlet will service a 12-inch sanitary sewer main.

Clamping Brackets: The clamping brackets shall be 304 stainless steel “Reliner” adjustable clamping brackets with stainless steel fasteners as Manufactured by Duran, Inc. or prebid BMU Engineer approved equal as shown in the Standard Plates.

Pipe and Fittings: PVC.

Couplings: Fernco rubber coupling or prebid BMU Engineer approved equal for the drop sanitary sewer manhole assembly.

Ductile-Iron Piping: Ductile-iron piping shall be required for all elevated sanitary sewer stubouts from the sanitary sewer manhole to 5-foot (min) onto virgin soil.

Sanitary Sewer Manhole Construction Plate Marker: Sanitary sewer manhole construction plate markers shall be constructed in accordance with the Standard Plates detail. The sanitary sewer manhole construction plate marker shall be constructed using “Flex-Guide 300 Series” delineator post and base as manufactured by Davidson Traffic Control Products or prebid BMU Engineer approved equal.

2.15 SANITARY SEWER SERVICES

General:

Pipe: Refer to Section 2.8 for material type.

Pipe: Schedule 40 PVC, for cleanouts. Schedule 40 PVC shall be required for sanitary sewer services where the water service is in the same trench and the water service is not shelved above the sanitary sewer service.

Sanitary Sewer Service Bends: Refer to Section 2.8 for material type. Bends greater than 45 degrees will not be allowed.

Sanitary Sewer Service Cleanouts:

Pipe: Schedule 40 PVC.

Cleanout Cap and Cover: Cap shall be Neenah R1976 or prebid BMU Engineer approved equal. The cover shall be labeled “SEWER”.

See Standard Plates for details.

Sanitary Sewer Service Pipe Couplings: “Strong Back RC Series Repair Coupling” as manufactured by Fernco, Inc., or prebid BMU Engineer approved equal will be allowed for sanitary sewer services. All couplings shall bear the Manufacturer’s identifying mark and size.
Reducers: Where reducers are necessary and approved for connections to existing service lines, reducers shall be eccentric type manufactured of approved pipe material. Coupling connections shall not be installed on reducers; and reducing couplings will not be allowed. Reducers will only be allowed for special situations as determined necessary by the BMU Engineer.

2.16 SANITARY SEWER SERVICE WYES

Wyes with the same main line and branch line diameter will not be allowed (example: 4x4, 6x6, 8x8, etc.).

2.17 TAPPING SADDLES

Tapping saddles for all PVC pipe sizes shall be “Inserta Tee” as manufactured by Inserta Fittings Company or prebid BMU Engineer approved.

2.18 PIPE INSULATION

Sanitary sewer main insulation shall be an extruded polystyrene board and meet the requirements of ASTM C578, Type IV. The minimum R-value shall be 5.0 as determined by ASTM C518. The minimum compressive strength shall be 25-psi as determined by ASTM D1621. The maximum water absorption shall be 0.1-percent by volume as determined by ASTM C272. The maximum water vapor permeability shall be 1.1-perm as determined by ASTM E96.

Sanitary sewer main insulation shall be STYROFOAM™ Square Edge by the Dow Chemical Company, STYROFOAM™ Brand Scoreboard by the Dow Chemical Company, or prebid BMU Engineer approved equal.

2.19 ENCASEMENT PIPE, CASING SPACERS AND END SEALS

Encasement Pipe for Water/Sewer Main Crossings: If an encasement pipe is required because of vertical separation issues between a water main and sanitary sewer main, the Contractor may utilize PVC sanitary sewer pipe or PVC water main pipe for the encasement pipe. Water piping or sanitary sewer piping used for encasement piping shall adhere to the “City of Brookings Standard Specifications for Water Main Construction” or these “City of Brookings Standard Specifications for Sanitary Sewer Main Construction”.

Encasement Pipe for Permitted Crossings: Encasement pipe for permitted right-of-way crossings, such as interstate crossings, railroad crossings, major or minor arterial roadways, county or township roadways, etc. shall be steel piping conforming to Grade B ASTM A53 with joints butt welded around the entire pipe. Wall thickness shall be schedule 10 (min) or schedule 20, as specified by the BMU Engineer.

Casing Spacers: Casing spacers shall be Model SSI-8 for carrier pipes 24-inches in diameter and smaller and Model SSI-12-2 for carrier pipes 30-inches in diameter and greater as manufactured by Advance Products & Systems, Inc., Lafayette, LA, or prebid BMU Engineer approved equal.
Casing spacers shall be constructed of circular T-304 stainless steel segments, which bolt together forming a shell around the carrier pipe. The spacers shall be designed with risers (when needed) and runners to support and center the carrier pipe within the casing pipe and maintain a clearance of 1/2-inch to 1-inch maximum between the casing pipe inside diameter (ID) and the spacer outside diameter (OD). On carrier pipes with an OD of 16-inches or less, each spacer shall have four riser/runner combinations - two on each half. On carrier pipes with an OD of 20-inches and greater, the number of riser/runner combinations shall be as recommended by the Manufacturer, with four being the minimum. T-304 stainless steel bolts and nuts shall be supplied with the spacers.

The band shall be manufactured of 8-inch (SSI-8) or 12-inch (SSI-12-2) wide, 14-gauge T-304 stainless steel. The risers shall be constructed of T-304 stainless steel having a minimum length of 6-inches (SSI-8) or 10-inches (SSI-12-2). Abrasion-resistant runners, having a minimum length of 7-inches (SSI-8) or 11-inches (SSI-12-2), and a minimum width of 2-inches, shall be attached to each riser to minimize friction between the casing pipe and the carrier pipe as it is installed. Runner material shall be of glass reinforced plastic with the following minimum properties: compression strength of 25,000-psi, flexural strength of 32,000-psi, and tensile strength of 22,000-psi. The ends of all runners shall be beveled to facilitate installation over rough weld beads or the welded ends of misaligned or deformed casing pipe.

Interior surfaces of the stainless steel shell shall be lined with EPDM having a minimum thickness of 0.090-inches with a hardness of durometer “A” 85-90. Placement of the spacers shall be a maximum of 1-foot on each side of the bell joint and one every 6 to 8-feet thereafter. End seals shall be Model AW Wraparound casing end seals as manufactured by Advance Products & Systems, Inc., Lafayette, LA, or prebid BMU Engineer approved equal. Full conical-shaped wraparound seals made of 1/8-inch thick neoprene rubber shall be provided for each end of the casing pipe. T-304 stainless steel banding straps with a 100-percent nonmagnetic worm gear mechanism and pressure sensitive butyl mastic strips shall be provided to seal edges. Safety factor of 2.0.

Refer to detail in Standard Plates.

2.20 TEMPORARY SANITARY SEWER MAIN BYPASS PIPE

Temporary sewer/sewer main bypass pipe and fittings shall be High Density Polyethylene (HDPE) Pipe, unless otherwise prebid BMU Engineer approved, and shall adhere to the following:

HDPE Pipe: HDPE piping shall conform to the latest revision of the AWWA C906 standard.

Fusion: Pipe ends shall be fused together utilizing Thermal Butt Fusion or Electrofusion.

PVC Sanitary Sewer Pipe: PVC Gravity Sanitary Sewer Pipe conforming to these specifications may be used for bypass pumping on short distance low flow sewage projects if prebid BMU Engineer approved.
3.0 CONSTRUCTION REQUIREMENTS

3.1 ALIGNMENT AND GRADE
The Engineer will furnish all the necessary line and grade stakes, benchmarks, or other necessary control. It is the responsibility of the Contractor to protect these stakes, and any replacement of stakes shall be at the expense of the Contractor. The Contractor shall carry alignment and grade into the trench by means of an approved laser beam system and by a surveying level instrument. At no time shall the Contractor change the grade without Engineer approval. If underground interference is encountered at the assigned grade, the Contractor shall notify the Engineer and wait until the revised grade for the sanitary sewer system has been determined, if necessary. As a secondary check to the laser beam device, the Contractor shall check the grade from the grade stake to pipe invert a minimum of every 100-feet using a surveying level instrument.

3.2 INTERRUPTION OF SERVICE
The Contractor shall notify all customers affected by any interruption of sanitary sewer service at least 24-hours before the interruption of sanitary sewer service. Customers shall be verbally notified and provided an interruption of service notice. In the event a consumer cannot be verbally notified, the Contractor shall secure the interruption of service notice provided by BMU to the most frequently used entrance.

3.3 REMOVAL AND ABANDONING OF SANITARY SEWER PIPE AND SANITARY SEWER MANHOLES
Removal Items: Sanitary sewer main and sanitary sewer manholes shall be removed at the locations shown on the plans or as directed by the BMU Engineer. Sanitary sewer manholes shall be entirely removed and disposed of unless otherwise directed by the BMU Engineer.

Abandon Sanitary Sewer Pipe: Abandoned sanitary sewer pipe that is to remain in-place shall be entirely filled with K-crete, unless otherwise indicated.

Abandon Sanitary Sewer Manhole: Sanitary sewer manholes that are to be abandoned in-place shall be abandoned by removing the top 4-feet (min) below finished grade elevation, seal off any incoming piping with K-crete, install a 2-inch minimum diameter hole in the base section of the sanitary sewer manhole, and fill the sanitary sewer manhole with granular material as directed by the BMU Engineer.

3.4 TRENCH EXCAVATION
Open Cut Trench. All sanitary sewer systems shall be built in open cut trenches, except where conditions warrant, the Engineer may permit the use of short tunnels.

Unsuitable Subgrade. Wherever, in the opinion of the Engineer, the bottom of the trench does not afford a reliable or suitable foundation, the trench shall be excavated to such additional depth as is required and replaced with trench stabilization material. Pipe bedding material will be required in addition to trench stabilization material where trench stabilization material is used.
The Contractor may use any means he desires to excavate to the proper depth and width necessary for the construction of the pipe according to the plans and specifications. The width of the trench at the top of the pipe shall be a minimum of 6-inches to 9-inches on each side of the pipe. Trenches shall be excavated with vertical sides from pipe flow line to a point 1-foot above top of pipe where possible.

Excavation Below Pipe Grade: Trench excavation below pipe grade shall be backfilled with bedding material approved by the Engineer and thoroughly tamped to provide a uniform and continuous bearing and support for the pipe.

Excavation in Unstable Soil: The Contractor shall notify the Engineer when material considered unstable for the pipe foundation is encountered and where additional support, stabilization, and undercutting of the pipe trench is necessary. If the Contractor cannot assure a product in accordance with the specifications, the Contractor may request the use of trench stabilization material and/or geotextile fabric where the trench base is not structurally adequate or otherwise unstable to provide a uniform stable pipe foundation and requires additional undercutting for placement of trench stabilization material and/or geotextile fabric.

The undercutting and use of trench stabilization material and/or geotextile fabric shall only be approved for use in extreme conditions where it is obviously necessary. Approval for trench stabilization material and geotextile fabric must be obtained from the Engineer, prior to installation.

If geotextile fabric is used, it should be placed on the neutral soils and extended up the trench sidewalls to a level of at least the mid-point of the pipe. Placement of the fabric should then be followed by placement of the stabilization material.

The Contractor will be fully responsible for constructing the sanitary sewer system on a stable base and any defects resulting from improperly preparing the pipe foundation shall be the Contractor's responsibility.

Installation of Pipe: Sanitary sewer pipe shall not be installed in frozen ground or in water, and no water will be allowed to run into or through the pipe.

Pipe shall be carefully installed to line and grade in accordance with line and grade stakes set by the Engineer so that the finished sanitary sewer system will present a uniform bore. Any noticeable variations from true alignment or grade will be cause for rejection of the work.

Pipe shall be installed upgrade with spigot ends pointing in the direction of flow. The bottom of the trench shall be freed of all rocks and stones and shall be hand shaped and bedded with bedding material as hereafter specified, and the pipe shall be in firm contact with the bedding material for its entire length. At each joint of bell and spigot pipe, a hole shall be dug of sufficient size so that the weight of the pipe will rest on the barrel of the pipe and not on the bells, and the bell hole shall not be compacted. Pipe must be properly fitted together. A suitable stopper shall be kept in the end of the pipe so as to prevent any dirt or water from entering during the progress of the work at all times. Any dirt, loose material, or cement mortar which may accumulate in the pipe shall be removed as the work progresses.
Standard length pipe shall be utilized for all installations. Shorter lengths will only be allowed for use at sanitary sewer manhole terminations or sanitary sewer service wye locations. A full standard length pipe shall be used upstream of all sanitary sewer manholes.

3.5 DEWATERING

It is the Contractor's responsibility to investigate soil conditions to determine what dewatering methods shall be required.

Sanitary sewer main installation shall be accomplished in a relatively dry trench. Joints shall not be connected under water. If ground water is encountered, the Contractor shall dewater the trench with suitable pumps and equipment. Lowering of the groundwater level shall be by means of wells, well points, or other suitable means.

Water resulting from the dewatering operation shall be disposed of in a manner approved by the Engineer and South Dakota Department of Environment and Natural Resources. It shall not be pumped onto private property without the property Owner's approval. Any damage to property, either public or private, shall be rectified to the satisfaction of the Owner and the City. All applicable permits must be obtained by the Contractor before the dewatering operation begins.

The water discharged from the dewatering operations shall not be allowed to wash through any excavated material. The Contractor shall be responsible for any damages that might result from this operation.

3.6 BEDDING, BACKFILL, COMPACTION AND COMPACTION TESTING

Compaction Testing: All bedding and backfill areas shall be subject to compaction testing by nuclear or standard methods according to the latest applicable ASTM Specifications. In addition to the construction and testing procedures outlined in other sections of the specifications, the Contractor shall be required to install the pipe in such a manner so that the diametric deflection of the pipe shall not exceed 5-percent (see pipe testing section) and the materials surrounding the pipe shall be compacted to the required Standard Proctor Densities outlined in D2321. The areas requiring compaction shall include the bedding, initial backfill, and final backfill areas, as defined in the following sections. The Engineer may take random compaction tests of the material. If any of these tests indicate that the material has not been compacted to the required density, the Contractor shall re-compact said material at no additional cost to the Owner, and the Engineer shall then have the right to take additional compaction tests to assure that this material is compacted to the proper density without any additional cost to the Owner.
Bedding of Pipe: The trench base shall be undercut a minimum of 6-inches below the bottom of the pipe and uniformly backfilled with bedding material to 6-inches above the pipe. After the pipe has been installed on top of the first layer of bedding material, the haunching area shall be backfilled with bedding material up to the “spring-line” (halfway) on the pipe. The bedding material shall be “shovel-sliced” or hand tamped around and under the haunches of the pipe to assure adequate and uniform support along the bottom of the pipe. Care shall be taken to prevent dislodging and misalignment of the pipe and to provide adequate bell hole for the pipe.

All sanitary sewer service lines (4-inches to 6-inches) shall be installed with bedding material from 2-inches below the pipe to 2-inches above the top of the pipe.

Initial Backfilling of Pipe Trench: All sanitary sewer pipe installed in an open trench shall be initial backfilled to at least 12-inches above the top of the pipe. The initial backfill shall be placed evenly so as not to disturb the grade or line of the pipe. Above the bedding area the pipe shall be backfilled with acceptable native material (Class I, II, and III as described in ASTM D2321), approved by the Engineer, or with granular material to a minimum of 90-percent Standard Proctor Density to 12-inches above the top of the pipe.

Final Backfilling of Trench to Grade: All final backfill material shall consist of approved excavation material, granular material, or as otherwise specified. The final backfill shall be placed in layers and compacted by suitable and approved compaction methods in a manner approved by the Engineer to at least 95-percent Standard Proctor Density, or as otherwise specified.

Excess material not required for final backfilling shall be removed by the Contractor or otherwise disposed of as directed by the Engineer.

If the material encountered in the trench excavations is unsuitable to be used as final backfill material, it shall be replaced with other suitable material available at the project site, suitable material transported in or with granular material, as approved by the Engineer. In final backfill areas below pavement, the Engineer may direct the Contractor to use native material a specified distance below the pavement elevation to ensure a consistent material is utilized under the pavement section.

At least 36-inches of cover shall be placed over the top of the pipe before the trench is wheel-loaded, and 48-inches of cover shall be placed over the top of the pipe before the trench is hydro-hammered for compaction. Remaining trench compaction to be in 2-foot maximum lifts.
3.7 UNDERGROUND INTERFERENCE

The location of underground public or private utilities may be shown on the plans, as reported by the various utility companies and BMU, but this does not relieve the Contractor of the responsibility of determining the accuracy or completeness of said locations. The Contractor shall determine the location of all underground ducts, conduits, pipes, cables, or structures which will be affected by the work, and shall take steps necessary to support and protect said structures by any means suitable to the Owners of the structure involved and the Engineer. When necessary, the Contractor shall conduct operations as to permit access to the work site and provide time for utility work to be accomplished during the progress of the work.

Portions of utilities which are found to interfere with the alignment and grade of the sanitary sewer main will be relocated, altered, or reconstructed by the Owners, or the Engineer may order changes in the work to avoid interference. Temporary or permanent relocation or alteration of utilities requested by the Contractor for the Contractor’s convenience shall be the Contractor’s responsibility, and the Contractor shall make all arrangements and bear all costs. In those instances where utility relocation or reconstruction is impractical, the Engineer may order a deviation from alignment and grade.

All costs of exploratory investigation or excavations necessary for determining the location and depth of utilities shall be included in the contract bid price for installing pipe.

3.8 WATER MAIN AND SANITARY SEWER MAIN SEPARATION

Horizontal Pipe Separation: Sanitary sewer mains shall be laid at least 10-feet horizontally from any existing or proposed water main. The distance shall be measured edge to edge. In cases where it is not practical to maintain a 10-foot pipe separation, the Department may allow deviation on a case-by-case basis, if supported by data from the Design Engineer. Such deviation may allow installation of the sanitary sewer main closer to a water main, provided that the water main is in a separate trench or on an undisturbed earth shelf located on one side of the sanitary sewer main and at an elevation so the bottom of the water main is at least 18-inches above the top of the sanitary sewer main.
Vertical Pipe Separation for Crossings: Sanitary Sewer Main Crossing Over or Under Water Main – The vertical separation between the water main and sanitary sewer main at crossings shall be constructed to provide a minimum of 18-inches of vertical separation from the outside of the sanitary sewer main to the outside of the water main. The crossing shall be constructed so the sanitary sewer joints will be equidistant and as far as possible from the water main.

In the event 18-inches of vertical pipe separation cannot be maintained, adhere to one of the following:

- Use vertical bends to lower the water main under the sanitary sewer main (preferred method).
- Install an encasement pipe around the water main or sanitary sewer main. The encasement pipe shall be 20-foot minimum in length, centered where the pipes intersect, and sealed at both ends with end seals.

Storm Sewer Crossing: A reinforced concrete pipe (RCP) storm sewer pipe may cross below a water main with a separation of less than 18-inches or at any height above a water main provided the joints on the RCP within 10-feet of either side of the water main are assembled with either:

- A gasket that conforms to ASTM C443 specifications (generally available for round RCP pipe up to 72-inches), OR:
- A watertight sealant meeting ASTM C990, AASHTO M 198, and Federal Specification #SS-S-210-A.

3.9 SANITARY SEWER PIPE

Installation of PVC pipe shall conform to the latest revision of ASTM D2321 “Standard Recommended Practice for Underground Installation of Flexible Thermoplastic Sewer Pipe,” and the Specifications and Standard Plates of the City of Brookings.

Sanitary sewer main shall be installed in the locations shown on the plans or as directed by the Engineer. Sanitary sewer main shall not be installed in frozen ground or in water, and no water will be allowed to run into or through the pipe. Before installing the sanitary sewer main, it shall be cleaned of all foreign matter and kept clean thereafter. Open ends shall be protected at all times to prevent the entrance of dirt, trench water, animals, or foreign matter into the pipe. The bell and spigot shall be wiped clean and sufficient lubrication placed on the gasket and spigot before the pipe is pushed fully into the bell.

Field cut spigot ends of push-on joints shall have a square end with beveled edge equal to a factory cut prior to being pushed into the bell. Every pipe shall be bedded uniformly throughout its length with sanitary sewer main bedding material. Care shall be taken to not have any part of the pipe bearing on rocks or stones.

Sanitary sewer main pipe which is stubbed for future extension shall end with a bell end with a short pipe with cap installed in the bell end which can be removed for future pipe extension.
3.10 TRACER WIRE SYSTEM FOR SANITARY SEWER FORCE MAINS

Tracer wire system, including terminal boxes, ground rods and all appurtenances, shall be installed with PVC sanitary sewer force main and shall be considered incidental to the sanitary sewer force main installation. The wire shall be installed along the lower quadrant of the pipe, but the pipe shall not be laid directly on the wire. Ground rods shall be installed adjacent to connections and at locations specified on the plans. The tracer wire shall be brought to each terminal box and connected to a 60-inch ground rod. The tracer wire shall be spliced only if approved by the Engineer. All underground splices shall be inspected by the Engineer prior to backfilling. The Contractor shall review test methods with the Engineer and be responsible for testing the tracer wire system for conductivity. Testing for conductivity shall be completed after the service lines have been tapped. If the tracer wire system does not function as intended, the Contractor shall repair the system to the satisfaction of the Engineer.

Terminal boxes shall be placed at locations designated by the Engineer and no more than 1,000-feet apart from one another or as specified on the plan notes or drawings.

3.11 SANITARY SEWER PIPE JOINTS

All PVC Sanitary Sewer Pipe shall be jointed utilizing elastomeric gaskets as referenced in ASTM D3034 and ASTM F679 and meeting the requirements of ASTM D3212. All pipe, fittings, and joints shall be installed in full compliance with the recommended practices of the pipe Manufacturer and as specified in the latest revision of ASTM D2321. The joint surfaces (external and internal) shall be wiped free of all foreign materials, and the spigot end shall be centered on grade into the bell end and the joint shall be properly seated in accordance with the Manufacturer’s recommendations. Any pipe that is field cut shall have a square end with beveled edge equal to a factory cut and all field repairs shall be performed per Manufacturer’s recommendations.

3.12 SANITARY SEWER MANHOLES

All sanitary sewer manholes shall be constructed to meet the requirements of the latest revision of ASTM C478, “Precast Reinforced Concrete Sanitary sewer manhole Sections,” and all related ASTM Specifications. BMU Engineer shall determine if manhole liners are required as per Bid Form.

All sanitary sewer manholes are to be built to the dimensions shown in the plan sheets, special information, detail plates, or cut sheets furnished by the Engineer. All sanitary sewer manhole sections shall be numbered and/or measured by the Contractor prior to installation to assure that the finished sanitary sewer manhole will be installed to grade as specified on the plan sheet or grade sheet.

Construction of all cast-in-place sanitary sewer manholes shall conform to the South Dakota Department of Transportation “Standard Specifications for Roads and Bridges” and Standard Plates, unless otherwise indicated.
Base and Sections: Where precast concrete sections are used, the base section shall be cast with proper cutouts to accommodate the required sanitary sewer pipes. Precast sections shall be connected together using a specified gasket material and shall be in place on all sanitary sewer manhole joints to assure watertight joints. All lift holes on the interior and exterior of the sanitary sewer manhole sections shall be filled with non-shrink grout. Where installation of lift-hole plugs are required, they shall be installed into the center of the sanitary sewer manhole wall. The area on either side of the lift-hole plug shall be filled with non-shrink grout.

All sanitary sewer manholes shall be constructed of precast base, barrel, and cone sections. The joints between sections shall be of watertight construction utilizing a specified gasket material.

All sanitary sewer manholes that are constructed shall be built with the base and bottom barrel section being precast together in one integral concrete pour to form a monolithic base section. Such will provide for no joint between the base and barrel section ensuring a watertight seal. This section shall be constructed to meet the Specifications of the latest revision of ASTM C478 and the sanitary sewer manhole details in the Standard Plates.

Sanitary sewer manholes shall not be constructed at the Manufacturer or in the field with piping installed in the sanitary sewer manhole boots prior to setting the sanitary sewer manhole in the trench. This type of installation will be cause for rejection of the work.

Doghouse base section is typically not allowed, unless the BMU Engineer determines there is no other feasible method of installation. If allowed, the Contractor shall submit detailed drawings and specifications including, but not limited to, waterstop pipe connectors, non-shrink grout compounds, etc. for review and prebid BMU Engineer approval.

Bench and Invert: All inverts shall be formed to the diameter of the incoming and outgoing pipe diameter up to the pipe centerline and vertical beyond that point. The invert shall be formed to a depth of one-half to two-thirds the pipe diameter. The forming of the bench and invert shall allow for the BMU sanitary sewer television camera to be installed into the invert and into any pipe connection into the sanitary sewer manhole. Where lateral connections are required into the sanitary sewer manhole, a gradual change in the direction of the sanitary sewer manhole invert for each lateral shall be formed. Sharp angles without gradual changes in direction will not be allowed. Flat bottomed sanitary sewer manholes will not be allowed. Such work will be cause for rejection of the work.

Where hand formed and reconstructed sanitary sewer manhole bench and inverts are determined necessary by the Engineer, they shall be constructed with concrete. The sanitary sewer manhole invert shall be shaped and finished in a glass smooth-like finish (a steel trowel will give this finish). The bench shall have a broomed finish.
Adjustment Rings: The preferred adjustment ring height shall be 4-inches, with a 12-inch maximum of adjustment on each sanitary sewer manhole. Unless otherwise specified, the sanitary sewer manhole cover shall be set approximately 6-inches below the finished street elevation by the sanitary sewer Contractor to be raised to finished grade elevation by the Contractor prior to paving.

The HDPE adjustment rings shall be installed as recommended by the Manufacturer. No shims or other leveling devices, other than leveling rings provided by the Manufacturer, will be permitted with use of the HDPE adjusting rings. The annular space between the adjusting rings shall be sealed using an approved butyl rubber sealant.

Sanitary Sewer Manhole External Frame Seal: Sanitary sewer manhole external frame seals shall be used on all manholes. The sanitary sewer manhole external frame seal shall extend onto the casting and the cone section a minimum of 2-inches. Sanitary sewer manhole external frame seals shall be installed in accordance with the Manufacturer's recommendations.

Frame and Cover: Sanitary sewer manhole frame and covers shall be installed in accordance with the Standard Plates or as specified.

Sanitary sewer manhole frames installed onto HDPE adjusting rings shall be installed using the Manufacturer's recommended sealant between the frames and adjusting rings to form a watertight seal.

Sanitary sewer manhole frames offset by more than 2-inches from the adjusting rings or corbel section will be rejected.

Sanitary sewer manhole frames and covers shall be set to the grade specified on the grade sheet and plans. Refer to the Standard Plates for setting the frame and covers to grade, either by the circular cutout method or setting the frame and lid to grade (including side slope) prior to any asphalt lifts.

Sanitary sewer manhole frame and covers in permanent gravel surfaced streets shall be vertically installed so that the sanitary sewer manhole rim is set 6 to 8-inches below the finished street grade.

Sanitary sewer manhole frame and covers placed on the sanitary sewer manhole riser prior to final surfacing shall be bolted to the corbel section with a continuous band of butyl rubber rope gasket between the frame and the corbel section.

Sanitary Sewer Manhole Boots: The precast base-barrel section shall also contain watertight gaskets, adaptors, or sealers to ensure a leak-proof connection between the sanitary sewer manhole and the sanitary sewer pipes entering the sanitary sewer manhole. Such connections shall be flexible and/or pliable enough to allow for deflection from shifting or settling of the sanitary sewer manholes and to accommodate the pipe on grade. The connections shall also be capable of adapting to the various sizes and types of sanitary sewer pipe that may be used. The sanitary sewer manhole boot shall be a PSX gasket, as manufactured by the Press Seal Gasket Corporation, or prebid BMU Engineer approved equal. When futures are specified, a short pipe length with a cap shall be installed and sealed. This section of pipe will need to be removed and replaced when the pipe is extended from the sanitary sewer manhole.
Drop Sanitary Sewer Manholes: Drop sanitary sewer manholes shall be constructed in accordance with the Manufacturer’s recommendations and as shown on the Standard Plates. The drop bowl shall be fastened securely with 304 stainless steel fasteners. The sanitary sewer main inlet shall protrude through the sanitary sewer manhole to the edge of the drop in the bowl, where the Contractor shall make a 1 1/4-inch long 45-60 degree v-notch in the bottom of the sanitary sewer main inlet to provide improved flow control. The PVC drop section shall be secured to the barrel section with Reliner brand 304 stainless steel adjustable clamping, or a prebid BMU Engineer approved equal. Clamps shall be required 6-inches maximum from the bottom 45 degree solvent weld elbow and 6-inches maximum from the drop bowl, with 4-foot” maximum spacing between clamps. A 45-degree bend shall be installed on the bottom of the drop to direct the flow towards the channel. The 304 stainless steel fasteners shall not be allowed to penetrate the precast sanitary sewer manhole section.

Sanitary Sewer Manhole Vertical Adjustment Reconstruction: Any sanitary sewer manhole that cannot be adjusted within the 12-inch height limit for adjusting sanitary sewer manholes shall be reconstructed.

When an existing sanitary sewer manhole is lower than the proposed finished grade elevation, the sanitary sewer manhole shall be required to be reconstructed by:

 Removal of the cone section and adding the appropriate height of barrel section(s) to increase the sanitary sewer manhole height to a level that the sanitary sewer manhole can be adjusted using the appropriate height of adjusting rings.

When an existing sanitary sewer manhole is higher than the proposed finished grade elevation, the sanitary sewer manhole shall be required to be reconstructed by:

 Removal of the cone and barrel section(s) and installing the appropriate height of barrel section to decrease the sanitary sewer manhole height to a level that the sanitary sewer manhole can be adjusted using the appropriate height of adjusting rings.

Sanitary Sewer Manhole Liners: The work shall include furnishing all labor, materials, equipment, and incidentals required to install sanitary sewer manhole sheet liner with studded backside in concrete sanitary sewer manholes, concrete structures, and appurtenances to effectively protect the exposed concrete surfaces from corrosion in those areas shown on the drawings or specified. The liner shall be continuous and free of pinholes at the joints and in the liner itself.

All work for and in connection with the installation of the lining, field seaming, and welding of joints shall be done in strict conformity with all applicable instructions and recommendations of the liner Manufacturer unless otherwise specified.
Installation of the lining and the welding of all joints shall be done in strict accordance with the Manufacturer’s instructions and recommendations and the details and methods indicated on approved shop drawings by an experienced and qualified installer acceptable to the Manufacturer and the Engineer. Lining welders shall be trained and certified by the lining Manufacturer prior to the start of welding. All pipe joints and other lined areas where welding is performed shall be numbered and initialed by the welder. The Contractor shall record on a daily basis at the end of each working day the identification of the joint areas and the welder who performed the work.

Coverage of the lining shall not be less than the minimum specified or as shown on the plans. Sanitary sewer manholes and concrete structures shall be fully lined on the interior, including man-way openings, unless otherwise shown or specified.

When needed, the lining shall be held snugly in place against inner forms by means of steel banding straps or other means recommended by the Manufacturer. Banding straps must be located in the interstitial space between studs to prevent crushing or tilting of the embedment studs.

If liner is extended for the purpose of joint overlap, embedment studs shall terminate not more than 1/2-inch from the end of the inside surface of the pipe section. Joint flaps shall extend approximately 4-inches beyond the end of the inside surface.

Concrete poured against lining shall be vibrated in a careful manner so as to protect the lining and produce a tense, homogenous concrete, securely anchoring the locking studs into the concrete.

Forms shall be properly cleaned and prepared to remove any abrasive areas that may damage the liner when removing forms. In removing forms, care should be taken to protect the lining from damage. Sharp instruments shall not be used to pry forms from lined surfaces. When forms are removed, any nails that remain in the lining shall be pulled, without tearing the lining, and the resulting holes clearly marked. Form tie holes shall be marked before ties are broken off and all areas of abrasion or damage shall be marked.

Hot joint compounds, such as coal tar, shall not be poured or applied to the lining. Solvents or adhesives shall not be used in fusion of material in any manner.

The Contractor shall take all necessary measures to prevent damage to installed lining from equipment and materials used in or taken through the work area and shall immediately repair any damage.

All welding shall be performed in accordance with the published directives and procedures of the Manufacturer and by welders certified by the Manufacturer. Completion of welding shall provide a one-piece monolithic concrete protective liner system that will provide excellent resistance to hydrogen sulfide attack and will not pull off the wall in the event that infiltration occurs.
Submittals: Submit to the Engineer for review, as provided in the General Conditions, complete shop drawings showing liner materials and typical installation details of all liner work and details of materials of construction and installation. The shop drawings shall include Manufacturer’s detailed drawings, directions, and specifications for construction and all special and typical installations.

Included with shipment of liner, submit certified test reports that the liner and material were manufactured in accordance with standards specified herein.

Joints in Lining for Concrete Structures: No lining of joints shall be made until after the trench has been backfilled and the joints pressure tested. Lining at joints shall be free of all mortar and other foreign material and shall be clean and dry before joint are made.

Field joints in the lining shall be of the following types used as prescribed:

- **Strip Type**: The joint shall be made with a separate 4-inch wide joint strip and two welding strips. The 4-inch joint strip shall be centered over the joint, and then extrusion welded to the liner. The width of the space between adjacent sheets shall not exceed 1-inch. The 4-inch joint strip shall lap over each sheet a minimum of 1.5-inch. It may be used at any transverse or longitudinal joint.

- **Lap Type**: The joint shall be made by lapping sheets not less than 1-inch. The upstream sheet shall overlap the one downstream. The lap shall be tack-welded into place, and then welded with an extrusion bead over the adjoined materials.

- **Butt Type**: Butt-type welds will not be allowed for field welding of joints.

All welding is to be in strict conformance with the instruction of the liner Manufacturer. Welding shall fuse both sheets together to provide a continuous joint equal in corrosion resistance and permeability to the liner plate.

Installation: Field seaming involves bonding of adjacent panels using approved thermal methods such as extrusion welding. Testing and verification of the resulting welds will be required.

Trial Seams:

General: Prior to any field welding of lined surface, trial seams shall be performed to ensure that the technician and method is adequate. Trial seams shall be performed on materials from the current project, a minimum of 3-feet in length. Trial weld seams shall then be tested to ensure equipment settings are sufficient to produce quality welds. Testing shall consist of both nondestructive and destructive methods.
Non-Destructive Seam Testing: Nondestructive testing shall consist of spark testing. Spark testing of the finished seams is required; a copper wire may be set into the weld joint prior to welding. This will allow for spark testing for the welded seam for determination of the presence of possible leaks in the weld. This process is not necessary but may provide an alternative method for nondestructive testing of the welds. Spark testing can be performed with approved instrumentation when set at approximately 20,000 to 35,000 volts depending upon apparatus. Any defects found should be marked and repaired according to approved repair methods.

Repairs of pinholes and defective areas shall be performed by extruding a bead of molten plastic over the surface, or if too large, a patch shall be utilized. Once complete, retest using the spark tester when applicable.

Destructive Seam Testing: When job requirements mandate destructive seam testing of trial seams, an appropriate number of samples should be determined by the Engineer. Weld seams should then be tested for shear strength according to standard industry guidelines. When proper welding techniques are followed, the weld shall exhibit approximately 80-percent of the parent tensile yield strength in shear when tested in accordance to ASTM D 4437.

Field Seams:

Non-Destructive Seam Testing: Nondestructive testing shall consist of spark testing. Spark testing allows for the welded seam to be tested for determination of the presence of possible leaks in the weld. Spark testing may be performed over the entire surface of the weld and liner sheet. Spark testing shall be performed with approved instrumentation set at approximately 20,000 to 35,000 volts depending upon apparatus. Any defects found shall be marked and repaired according to approved repair methods. The spark testing device shall be equipped with an audible alarm indicator for signaling any defects.

Repairs of pinholes and defective areas shall be performed by extruding a bead of molten plastic over the surface, or if too large, a patch shall be utilized. Once complete, retest using the spark tester when applicable.

Sanitary Sewer Sanitary Manhole Construction Plate Marker: The sanitary sewer manhole construction plate markers shall be used on all City of Brookings bid projects or development projects. Sanitary sewer manhole construction plate markers shall be installed on existing sanitary sewer manholes immediately after construction surfacing removals have been completed and on new sanitary sewer manholes immediately after installation. The markers, on asphalt streets, shall remain on the sanitary sewer manhole until after the first lift of asphalt is installed (with exception to when any internal sanitary sewer manhole construction work may need to be performed). The markers on concrete streets shall remain on the sanitary sewer manhole until concrete paving occurs. The Contractor shall ensure that all sanitary sewer manholes are secured, protected, and watertight at the end of each work day. Under no circumstances shall an uncompleted or completed sanitary sewer manhole be left uncovered, unprotected, or not watertight overnight.
Sanitary Sewer Sanitary Manhole Bench and Invert Reconstruct: Sanitary sewer manhole bench and invert reconstruct shall be done in accordance with the specifications and details for each individual repair.

3.13 CONNECTIONS TO EXISTING SANITARY SEWER MANHOLES

Wherever new sanitary sewer mains connect with existing sanitary sewer manholes or structures, the Contractor shall cut the necessary openings into the existing sanitary sewer manholes and make the connections thereto in a neat and workmanlike manner. The connections shall be made so as to make the joints around the entering sanitary sewers watertight and an approved smooth channeled flow line shall be constructed. All existing cast-in-place, precast, and block-type sanitary sewer manholes shall be core drilled, and sanitary sewer manhole boots shall be installed for the pipe connection.

Where existing sanitary sewer manholes are constructed of brick, cobblestone, or other materials determined by the Engineer that cannot be core drilled, pipes shall be grouted into the sanitary sewer manhole wall with non-shrink grout and a water seal. The water seal shall be placed continuously around the pipe to form a seal. The water seal shall be a butyl rubber rope type material.

All sanitary sewer manhole bench and inverts shall be reconstructed as a part of the connection to the existing sanitary sewer manhole.

3.14 STUBS AND FUTURES FROM SANITARY SEWER MANHOLES FOR FUTURE EXTENSIONS

Futures from sanitary sewer manholes shall be defined as piping and plugs that extend longer than one standard 13-foot section of pipe. Stubs from sanitary sewer manholes shall be defined as piping and plugs/caps that extend less than a 5-foot section of pipe. Stubs and futures from a sanitary sewer manhole shall be installed to the grade staked and/or specified. Futures shall be plugged with a watertight plug at a bell end section of pipe.

Stubs can be plugged at the bell end section of pipe or capped on a plain end section of pipe. Connecting onto stubs will not be allowed. Stubs must be removed from the existing sanitary sewer manhole when connections to the sanitary sewer manhole are installed and a full section of pipe must be installed. Stubs shall not extend more than 5-feet and no less than 3-feet in length from the sanitary sewer manhole unless otherwise specified.

3.15 PIPE COUPLINGS

Pipe couplings are typically not allowed, but if deemed necessary by the BMU Engineer, connect two spigot ends of the same diameter pipe together if the bell and spigot connections are not possible. Reducing couplings shall not be allowed.
3.16 SERVICE CONNECTIONS

For all new sanitary sewer mains, prefabricated wyes shall be installed for all sanitary sewer service stub-out locations and sealed with an approved watertight cap or plug. Wyes with the same branch pipe diameter as the main line sanitary sewer will not be permitted.

All taps of the existing sanitary sewer main shall be made by BMU where the sanitary sewer main is clay pipe material. Taps on existing pipes shall be made by tapping the line and using a saddle to connect the service pipe to the main line. Cutting out a section of main line pipe and installing a wye and couplings will not be permitted.

3.17 SANITARY SEWER SERVICE GENERAL REQUIREMENTS

General: Glued connections will only be allowed at the connection between the SDR 35 or SDR 26 and the Schedule 40 PVC pipe at the building. 22 1/2-degree bends shall not be located closer than 3-feet from each other.

Cleanouts: Cleanouts are required for sanitary sewer service lines greater than 100-feet in length or change in horizontal direction, and shall be used only in approved locations. Cleanouts used for sanitary sewer service lines shall be covered at finished grade with a Neenah R1976 frame and cover except for cleanouts located adjacent (within 5-feet) to the structure it services. The cleanout shall be constructed as shown on the Standard Plates.

Cleanouts must be located within 5-feet of all commercial buildings. At least one cleanout shall be provided for all commercial buildings. The size of the cleanout piping shall be in accordance with the South Dakota Utility Contractor Handbook.

Couplings: Couplings, on new construction, will not be allowed unless the building’s sanitary sewer stub-out exists before the sanitary sewer service from the property line to the building is installed. If couplings are determined to be necessary, only one coupling for each service line will be allowed on new construction.

Reconnect Sanitary Sewer Service (Reconnecting sanitary sewer service lines where new main line sanitary sewer pipe is installed to replace existing main line sanitary sewer.): All new service lines to be connected into the new sanitary sewer main line pipe shall be made with an approved wye connection. A tap and tapping saddle will only be allowed where determined necessary by the Engineer. A coupling will be allowed for connecting the new service line to the existing service line.

Caps and Plugs: Existing clay service lines that are to be abandoned shall be capped with non-shrink grout placed continuously for a 1-foot distance into the pipe.

New PVC service lines shall be plugged at a bell end section of pipe.
3.18 SANITARY SEWER SERVICES

Sanitary Sewer Service Measurements: In-line wye branches for house connections, multiple dwellings, and commercial connections shall be built into the sanitary sewer mains at such points as shown on the drawings or as directed by the Engineer. It shall be the Contractor's responsibility to keep accurate records of the location of each wye and sanitary sewer service stub-out location measurement and give the information to the Engineer or Inspector at the end of each day.

All measurements shall be:

- Provided on a plat drawing in new subdivision work areas.
- Legible.
- Measured from a sanitary sewer manhole for wye locations (exp: Wye: 79' N of MHA2).
- Measured from the property line for stub-outs (exp: 50'S of NPL of Lot 2).
- All sanitary sewer service tie-down info to be given to the Inspector within 30-days of the installation of the pipe, prior to BMU acceptance of the sanitary sewer main system.

All wyes which are not to be immediately connected shall be closed with a watertight cap or plug. All wyes and stub-outs shall be marked with a marker (see Standard Plates) to help relocate them and prevent breakage when excavating. All stub-outs shall be capped and sealed.

Sanitary Sewer Service Grade and Installation: Sanitary sewer services (4-inch to 6-inch) are to be laid to grade at 2.00% (preferred) to 1.00% (minimum) grade. All sanitary sewer service installation methods and procedures shall conform to the Local, State or National Plumbing Code. Cleanouts shall be required to be brought to grade every 75-feet (maximum) for 4-inch sanitary sewer services and every 100-feet (maximum) for 6-inch sanitary sewer services, unless the 4-inch or 6-inch sanitary sewer service connects into a sanitary sewer manhole, thus eliminating the cleanout requirements.

All caps for sanitary sewer service stubs are to be glued to the service stub to accommodate an air pressure test, infiltration test or exfiltration test.

Sanitary Sewer Service Marker: All sanitary sewer service lines shall be marked by a steel fence post or an approved marker. The steel fence post should be painted green on the top 1-foot portion of the marker. The marker should be placed near the termination point of the sanitary sewer service stub-in. The sanitary sewer service marker shall remain in place and be maintained by the property Owner until the sanitary sewer service is extended into the property to serve a house, building, or other structure. The property Owner will be responsible for replacing damaged markers.
Sanitary Sewer Service Risers: Sanitary sewer service risers shall be required when the depth is 14-feet or more from the bottom of the sanitary sewer main to the proposed road grade. Elevations for an approved sanitary sewer service riser shall be determined by the Owner or Engineer. The in-line wye, pipe and fittings (bends) shall be required to be SDR 26 until the sanitary sewer service is 5-foot (min) onto virgin ground. After the sanitary sewer service is installed 5-foot (min) onto virgin ground, the sanitary sewer service may revert to ASTM D3034 with a SDR 35 rating, unless otherwise specified. Trench stabilization material may be required from the center of the carrier sanitary sewer main up to where the sanitary sewer service riser is anchored to the virgin soil to ensure the sanitary sewer service shall be stable when backfilling.

Trench stabilization material or rock ballast may be required from the center of the carrier sanitary sewer main up to where the sanitary sewer service riser is anchored to the virgin soil. This is to ensure the sanitary sewer service shall be stable when backfilling.

Sanitary Sewer Services via Directional Boring or Hole-Hogging: Sanitary sewer services installed via directional boring or hole-hogging are to be prior approved by the BMU Engineer. Directional boring or hole-hogging a sanitary sewer service line will not be allowed for sanitary sewer services with grades less than 2.00%. 4-inch to 6-inch sanitary sewer service piping and fittings installed via directional boring or hole hogging shall conform to the latest revision of ASTM D3034, SDR 26; such shall be from one end of the directional bore or hole-hog to the other end of the directional bore or hole-hog. On either side of the directional bore or hole-hog the sanitary sewer service may be reverted to ASTM D3034 with a SDR 35 rating, if depth allows.

Prior to inspection, the Contractor shall be required to clean the sanitary sewer service line which has been directional bored or hole hocked with a bean machine or etc., and get all excess debris and water out of the sanitary sewer service line. The Engineer shall then pour a determined amount of water, such as five gallons, in the high end of the sanitary sewer service line with a minimum of 95% of the water being retrieved at the low end of the sanitary sewer service line for the service line to pass inspection. This is to ensure that there are no sags in the sanitary sewer service line where directional boring or hole hogging was utilized.

Sanitary Sewer Service Connections: All sanitary sewer service taps must be adequately supported prior to backfilling. The Contractor must coordinate all BMU installed sanitary sewer service taps with BMU crews.

The trench for the sanitary sewer service taps shall be excavated to meet all applicable OSHA trench safety requirements prior to any work to be completed by BMU personnel. If the trench is unsafe to complete sanitary sewer tapping operations, the Contractor shall be required to provide the necessary additional work to ensure safety of the trench to the satisfaction of the BMU tapping personnel.
Abandon Septic Tank: If a sanitary sewer service is being installed to replace an existing septic tank system, the Contractor shall decommission the septic tank after installation of the sanitary sewer service. If the septic tank system is not completely removed, the Contractor shall pump out and dispose of all existing sludge in the septic tank and then remove and dispose of the top section of the concrete septic tank. The Contractor shall break up or punch holes in the floor of the remaining bottom section of the septic tank to allow the ground water through and keep the tank from floating. The Contractor shall fill the septic tank with an Engineer approved fill.

3.19 CASING PIPE VIA BORING (JACKING)

It shall be the responsibility of the Contractor to maintain the alignment and grade specified. The boring (jacking) specifications shall be in accordance with these specifications, plan sheets, plan notes and Standard Plates.

3.20 TEMPORARY SANITARY SEWER BYPASS SYSTEM

Property Customers: The Contractor shall coordinate with all property Customers for a planned disruption of sanitary sewer service or accessibility issues created by the temporary sewer main bypass system.

Contractor shall provide a 24-hour contact person who has adequate parts and equipment readily accessible to make necessary repairs to temporary sanitary sewer main bypass system in a timely manner.

The Contractor shall contact all property Customers (that are at the property at the time of service interruption) along any sanitary sewer main project where the property Customers have the potential to discharge sanitary sewer into the construction area due to an open service line in the trench or other means. The Contractor shall inform the Customers not to discharge sanitary sewer during the time(s) when the Resident’s sanitary sewer service is not connected to the BMU sanitary sewer system. The Contractor shall inform the Resident of the estimated time that the service will not be functional and inform them immediately (by door hanger if not home) when their service can be used.

The Contractor shall also install door hangers (furnished by the BMU) on each affected property Customers door. The door hanger shall indicate the time when the property will not be allowed to discharge sewage to the sanitary sewer system and a Contractor phone number for answering questions.

Sanitary Sewer Bypass System: Bypass piping required for an extended period of time, if directed, shall be buried or covered by granular material ramps where the pipe crosses bike trails, sidewalks, driveways, roads, pedestrian crossings, entrances, etc.

When bypass pumping is in operation, bypass system shall be monitored continuously by personnel familiar with the bypass pumping system operation and maintenance, and has in possession the BMU Engineer approved written emergency plan. Contractor shall provide the necessary labor, equipment and fuel to ensure uninterrupted and sufficient pumping at all times. Bypass pumping will be required for the duration of the project until the new sewer main has passed all required tests and is capable of conveying the wastewater flows.
Where existing flow cannot be maintained, interruption of service shall be minimized such that no discharge of sanitary sewage to any natural waterway, storm sewer, open trench, trench excavation, ground surface, street, gutter or any other place which may constitute a health hazard.

The Contractor is hereby notified that the temporary bypass system is critical to the Owners’ overall operation. The Contractor shall provide adequate supervision, fuel, labor and materials to ensure continuous operation of the temporary sanitary sewer bypass system. The Contractor shall be liable for any environmental damages, sewage backups in homes or fines caused by the failure to maintain continuous operation of the temporary bypass system.

Bypass operations must be approved by the Owner and/or BMU Engineer before starting. Bypass pumping equipment shall include pumps, piping, and related equipment necessary to divert the flow of sewage around the section in which the work is to be performed. In addition, the Contractor shall maintain at the same location and in operable condition, duplicate equipment to be used in case there is equipment failure. In this event, the Contractor shall promptly repair or replace the failed equipment to the satisfaction of the BMU Engineer. The new sewer line may be used by the Contractor to carry the sanitary flows after the new pipe has passed inspection and required testing. Any “temporary” connections to the new sewer main are subject to BMU Engineer approval.

All pumps and piping systems shall have sufficient capacity to accommodate the peak flow of the sanitary sewer main being bypassed. The temporary bypass shall consist of no less than 2-pumps at each pumping location and each must be capable of conveying the peak flow with any single pump out of service. The pumps shall be provided with suction piping and plumbed as required. Only specified sanitary sewer manholes may be used for sewage access. To achieve favorable pumping conditions and to prevent suction lines from impacting the flow in the interceptor, temporary sumps shall be installed at the Contractor’s desired pumping locations as per the BMU Engineer approved Contractor’s detailed drawing. The sump is to be installed adjacent to BMU Engineer approved sanitary sewer manholes and in accordance with the temporary bypass Supplier’s requirements. The pumps and drives shall be rated for continuous duty and shall be capable of pumping the flow range without surging, cavitation’s, or vibration. The pump shall not overload the driver at any point on the pump-operating curve. The pump shall be suitable for use with raw unscreened sewage and trash.

The pump shall be a self-contained unit designed for temporary use. All pumps shall be equipped with prime assist features to ensure re-prime. Pumps shall be capable of re-prime lift of up to 15-feet. The pumps must be constructed to allow dry running for long periods of time to accommodate the cyclical nature of wastewater flows. The Contractor shall provide the necessary start/stop controls for each pump.
Sanitary Sewer Main Construction Specifications

See Standard Plates for bypass pump and piping arrangement requirements. Provide pressure gauges on the suction and discharge side of all pumps. The Contractor shall provide a flow meter at the discharge of each pump used for the bypass for mains 24-inches and larger. Provide LCD displays capable of showing instantaneous, peak, daily and monthly flows with an accuracy of +/- 5%. Provide mechanical indicators on all check valves. Field demonstrate two points on the pump curve for each pump to verify capacity. The bypass pumping system shall be in operation a predetermined time prior to any existing piping may be removed. At the bypass location, pumps, motors, engines, suction sanitary sewer manholes and generators shall be surrounded by a safety fence.

Sanitary sewer manholes and/or sumps opened for use as suction or discharge points must be kept sealed to prevent odors from escaping.

City Sound Ordinance: Contractor shall comply with City sound ordinance and obtain a noise permit if pumping is required between the hours of 10:00 PM and 7:00 AM. Each pump setup shall meet the following noise requirement as measured on the dBA scale at the measured distance from the suction point: 85 dBA at 23 feet.

Temporary Electric: Temporary electric power for the temporary sanitary sewer bypass system pumps may be available at a cost to the Contractor. Contact Brookings Municipal Utilities for temporary electric power availability and cost estimates.

Hydrotesting: The sanitary sewer bypass system shall be hydrotested at 50-psi prior to commencing bypass pumping. The system shall hold the pressure for a minimum of 1-hour without dropping more than 5-psi. If pressure drops more than 5-psi, the Contractor must drain the line and retest after repairs have been made. Water for hydrotesting may be drawn from a BMU fire hydrant, which shall be operated only by BMU Personnel. The Contractor will not be charged for water usage for hydrotesting. Discharge shall go into the BMU sanitary sewer system.

Discharge Pipe Flushing: The Contractor shall provide adequate fittings for the discharge piping to accommodate flushing after use. Discharge pipes shall be flushed after each use before they can be moved. Water for flushing the bypass lines may be drawn from a BMU fire hydrant, which shall be operated only by BMU Personnel. The Contractor will not be charged for water usage for flushing the discharge pipes. Discharge shall go into the BMU sanitary sewer system.

Qualified Bypass Pumping Contractors: The temporary sanitary sewer bypass pumping system supplier shall be prebid BMU Engineer approved:
Submittals: 2-weeks (min) prior to bypass pumping, the Contractor shall submit a detailed written description, with detailed drawing, of the temporary sanitary sewer bypass system for BMU Engineer approval. The submittal shall include information on the quantity, capacity, and location of all pumping equipment. The submittal shall include pump Manufacturers’ pump performance curves. The size, type, and routing of all suction and discharge piping shall be provided. Materials, joint types, and calculated static head and friction values for flows and diameters relative to the length of discharge piping for the bypass shall be submitted. When calculating static head, Contractor should take into account the maximum discharge pipe elevation. The Contractor shall also provide a written emergency plan.

The BMU Engineer shall be given written notice, at least 2-days in advance, of intent to commence sanitary sewer bypass pumping operations.

3.21 SURFACE RESTORATION

The Contractor shall replace all surface material and shall restore paving, curb and gutter, sidewalks, lawn irrigation, fences, trees, sod, topsoil, and other items disturbed to a condition equal to or better before the work began; furnishing all labor, materials, and equipment necessary to do this work. Surface restoration shall conform to all City or DOT right-of-way requirements.

3.22 INSPECTION AND TESTING

General: The BMU Engineer or Engineers’ Representative shall have access at all times to all parts of the job, and the Contractor must furnish such personnel, facilities, equipment, tools, and materials as are necessary to make whatever tests and inspection that are deemed necessary. The BMU Engineer reserves the right to inspect and/or reject any part of, or all unsatisfactory work performed by the Contractor. Rejected or unapproved work shall not be paid for.

Pipe Material Testing: The BMU Engineer may require a test of specimens not to exceed 5-percent of the quantity of pipe to be furnished in order to prove the acceptability of the pipe. The Manufacturer shall provide an approved testing stand near the site of the plant.

Pipe Inspection: Prior to being lowered into the trench, each pipe shall be carefully inspected by the Contractor and those not meeting the specified requirements shall be removed from the site immediately. Rejections may be made for any of the reasons as stated in the specifications for each specific type of pipe. Pipe shall be protected during handling against impact, shocks, and free fall.

Television Inspection: BMU will perform an inspection of the completed sewer line through the use of a television camera. The expense of the initial television inspection and one additional re-inspection will be borne entirely by BMU. If defective workmanship of material or construction is noted, the deficiency shall be corrected by the Contractor at no expense to the Owner. BMU will perform additional television inspections to review if the repairs were made properly and in accordance with the specifications. The expense of any additional television inspections beyond the initial inspection and one additional re-inspection will be borne entirely by the Contractor.
The Contractor shall be responsible for all related costs, including concrete or asphalt resurfacing, if the street has been surfaced. The Contractor shall be required to repair all areas of infiltration and other deficiencies.

Cleaning: The Contractor shall be responsible for all work necessary to make the sewer acceptable for usage including removal of all mud, silt, rocks, or blockages that might hinder the flow and make said sewer and manholes unacceptable for final acceptance and usage.

BMU will not be responsible for cleaning mains prior to televising the sewer. In the event that the line is not acceptable for televising, due to the Contractor’s operations, the Contractor will be notified. It will be the Contractor’s responsibility to make arrangements to clean the sewer and make it acceptable for the television work.

Backfill Density Test: The Contractor shall expose the compacted soil layers, as required by the Engineer, to enable the Engineer to perform density tests. The cost of exposing the soil layers for testing shall be incidental to the sanitary sewer pipe and/or sanitary sewer manhole installation.

Pipe and Sanitary Sewer Manhole Leakage Field Testing – General: All sanitary sewer manholes and piping shall be tested and inspected for leakage by the Contractor. In addition to the testing and inspection for leakage in the sanitary sewer manhole, the Contractor shall perform sanitary sewer manhole vacuum tests when the ground water table elevation is lower than 2-feet above the top of the pipe. Exfiltration testing with water will only be allowed where specifically specified.

Piping shall be tested using one of two methods: infiltration test or pipe exfiltration test (low pressure air test). The pipe infiltration test shall be used when the ground water table elevation is greater than 2-feet above the top of the pipe as determined by the Engineer. The pipe exfiltration test (water test or low pressure air test) shall be used when the ground water table elevation is less than 2-feet above the top of the pipe as determined by the Engineer. Exfiltration testing of the pipe with water will only be allowed where specifically specified.

After each section of sanitary sewer between sanitary sewer manholes has been completely installed and backfilled, the line and sanitary sewer manholes shall be inspected by the Contractor for leakage. All visual leakage at individual joints or other parts of the sewer and/or leakage in excess of that specified shall be repaired by the Contractor at the Contractor’s expense before the sewer is accepted. The repair of leaks may require the removal and replacement of sanitary sewer manhole sections and pipe sections. The gasket shall be the sole element depended upon to make the joint leak proof. The use of grout to repair leaks will not be allowed. The actual method of correction shall be approved by the BMU Engineer prior to performing the repair.

When existing sanitary sewers which have service connections are being reconstructed or replaced (example: street reconstruction projects), the leakage test requirements may be waived or other testing methods substituted, subject to the approval of the BMU Engineer.
The Contractor shall notify the Engineer 24-hours prior to performing the test to enable the Engineer to be present during the testing operations. All data will be recorded and evaluated by the Engineer. All lined sanitary sewer manholes and pipe shall be tested prior to welding the joints.

Infiltration Test: This test shall be performed by the Contractor using a V-notched weir in the downstream sanitary sewer manhole of a line segment to measure the upstream sewer leakage. The test shall be maintained for not less than 24-hours before the measurement is performed. The test shall be performed one line segment at a time (a line segment shall be defined as the line from one sanitary sewer manhole to the next adjacent sanitary sewer manhole). The V-notched weir shall have volumetric calibrations (gallons/24 hours) and shall be easy to read.

The Engineer may waive the use of the V-notched weir if the Engineer determines that the leakage flow is obvious or nonexistent through visual inspection. The maximum allowable infiltration or exfiltration for any new sanitary sewer section, including all sanitary sewer manholes, shall be 50-gallons per inch of diameter per mile of pipe per day. All visible leakage at individual locations (including the amounts less than the 50-gallons per inch of diameter per mile of pipe per day) as determined by the Engineer shall still be the Contractor's responsibility to repair. Payment for the infiltration test will be incidental to the pipe and sanitary sewer manhole installation.

Pipe Exfiltration (Water) Test: The low pressure air test shall be used for the exfiltration test unless otherwise specified. The pipe exfiltration (water) test shall only be allowed where specified.

The pipe exfiltration (water) test shall be performed by sectionalizing the test so that interior pressure in pipe does not exceed 5-feet of water pressure. The test will be performed by the Contractor as follows:

1. Place watertight bulkhead in inlet of the upstream and downstream sanitary sewer manholes of sewer to be tested.
2. Fill section of sewer and upstream sanitary sewer manhole with water until the elevation of water in the upstream sanitary sewer manhole is 2-feet higher than the top of the pipe in the line being tested or 2-feet above the existing ground water in the trench-whichever is the higher.
3. Allow the water to stabilize for 1/2-hour, then fill the sanitary sewer manhole with water to the original level and begin the test.
4. The amount of water lost in the sanitary sewer manhole during 1-hour will be measured and used to determine the exfiltration. The maximum allowable drop in vertical water height in the sanitary sewer manhole shall be 1/4-inch for all diameter sanitary sewer manholes. If the water level in the sanitary sewer manhole drops below the allowable drop amount, the Contractor shall repair the leak and retest.
Pipe Exfiltration (Low Pressure Air) Test: The pipe exfiltration (low pressure air) test shall be performed in accordance with ASTM F1417 standards. The following procedure is summarized from ASTM F1417 and shall be followed in conjunction with ASTM F1417 unless modified by the Engineer. Repair of leaks may require the removal and replacement of sanitary sewer manhole sections. The use of grout to repair leaks will not be allowed.

Procedure:

Clean the section of sewer line to be tested by flushing or other means prior to conducting the low-pressure air test. This cleaning serves to eliminate debris and produce the most consistent results.

Isolate the section of sewer line to be tested by inflatable stoppers or other suitable test plugs.

Plug or cap the ends of all branches, laterals, tees, wyes, and stubs to be included in the test to prevent air leakage. All plugs and caps shall be securely braced to prevent blow-out. One of the plugs or caps should have an inlet tap, or other provision for connecting a hose to a portable air control source.

Connect the air hose to the inlet tap and portable air control source. The air equipment shall consist of necessary valves and pressure gauges to control an oil-free air source and the rate at which air flows into the test section to enable monitoring of the air pressure within the test section.

Add air slowly to the test section until the pressure inside the pipe reaches 4.0-psig.

After the pressure of 4.0-psig is obtained, regulate the air supply so that the pressure is maintained between 3.5-psig to 4.0-psig for at least 2-minutes depending on air/ground temperature conditions. The air temperature should stabilize in equilibrium with the temperature of the pipe walls. The pressure will normally drop slightly until equilibrium is obtained; however, a minimum of 3.5-psig is required.

Determine the rate of air loss by the time-pressure drop method.

Time-Pressure Drop Method; Air is slowly introduced into the section of pipe to be tested, until the air pressure is raised to approximately 4.0-psi and the test pipe section is stabilized as in:

Disconnect the air supply and decrease the pressure to 3.5-psi before starting the test. Determine the time required for the pressure to drop from 3.5-psi to 2.5-psi, and compare this interval to the required time to decide if the rate of air loss is within the allowable. Minimum holding times required by pipe diameter are shown in the Low Pressure Air Test Table and are also listed in ASTM 1417.

Upon completion of the test, open the bleeder valve and allow all air to escape. Plugs should not be removed until all air pressure in the test section has been reduced to atmospheric pressure.
The Low Pressure Air Test Table below indicates the minimum test period durations, length of test section for minimum test durations, and the formula to calculate the testing time when the test section length exceeds the length for minimum test time (in accordance with ASTM F1417). Repair of leaks may require the removal and replacement of pipe sections. The use of grout to repair leaks will not be allowed.

The Engineer may reduce the testing time to one-half the testing time if the pressure drop is less than 0.5-psi for the first one-half the test period listed in Low Pressure Air Test Table.

Low Pressure Air Test Table

<table>
<thead>
<tr>
<th>Nominal Pipe Diameter, (in)</th>
<th>Minimum Time, min:sec</th>
<th>Length for Minimum Time, (ft)</th>
<th>Time for Longer Length, (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3:46</td>
<td>597</td>
<td>0.380 L</td>
</tr>
<tr>
<td>6</td>
<td>5:40</td>
<td>398</td>
<td>0.854 L</td>
</tr>
<tr>
<td>8</td>
<td>7:34</td>
<td>298</td>
<td>1.520 L</td>
</tr>
<tr>
<td>10</td>
<td>9:26</td>
<td>239</td>
<td>2.374 L</td>
</tr>
<tr>
<td>12</td>
<td>11:20</td>
<td>199</td>
<td>3.418 L</td>
</tr>
<tr>
<td>15</td>
<td>14:10</td>
<td>159</td>
<td>5.342 L</td>
</tr>
<tr>
<td>18</td>
<td>17:00</td>
<td>133</td>
<td>7.692 L</td>
</tr>
<tr>
<td>21</td>
<td>19:50</td>
<td>114</td>
<td>10.470 L</td>
</tr>
<tr>
<td>24</td>
<td>22:40</td>
<td>99</td>
<td>13.674 L</td>
</tr>
<tr>
<td>27</td>
<td>25:30</td>
<td>88</td>
<td>17.306 L</td>
</tr>
<tr>
<td>30</td>
<td>28:20</td>
<td>80</td>
<td>21.366 L</td>
</tr>
<tr>
<td>33</td>
<td>31:10</td>
<td>72</td>
<td>25.852 L</td>
</tr>
<tr>
<td>36</td>
<td>34:00</td>
<td>66</td>
<td>30.768 L</td>
</tr>
</tbody>
</table>

Sanitary Sewer Sanitary Manhole Exfiltration Test: The sanitary sewer manhole vacuum test shall be used for testing sanitary sewer manholes for leakage defects. The sanitary sewer manhole water exfiltration test shall only be allowed where specified.

To perform this test, the inlet and outlet of the sanitary sewer manhole shall be plugged and the sanitary sewer manhole filled with water to a depth equal to that used for the sanitary line water test, or in the case when the air test was run on the line, a minimum depth of 2-feet above the top of the sewer line or 2-feet above the existing ground water - whichever is the higher. Allow the water to stabilize for 1/2-hour and refill the sanitary sewer manhole to the original elevation. Mark the initial depth of the water, and after 1-hour record the drop in the water level in the sanitary sewer manhole. The maximum allowable drop in vertical water height in the sanitary sewer manhole shall be 1/4-inch for all diameter sizes of sanitary sewer manholes. If the water level in the sanitary sewer manhole drops below the allowable drop amount, the Contractor shall repair the leak and retest.
Sanitary Sewer Manhole Vacuum Test: The sanitary sewer manhole vacuum test shall be performed in accordance with ASTM C1244. The following procedure is summarized from ASTM C1244 and shall be followed in conjunction with ASTM C1244 unless modified by the Engineer. The vacuum test shall include testing the top of the sanitary sewer manhole, excluding the adjusting rings and sanitary sewer manhole frame and cover. Testing will be allowed after backfilling has occurred or as specified in the specifications. Sanitary sewer manhole vacuum tester assembly and vacuum pumps shall be as manufactured by Cherne Industries, Inc. or prebid Engineer approved equal. Repair of leaks may require the removal and replacement of sanitary sewer manhole sections. The use of grout to repair leaks will not be allowed. Adhere to the following procedure:

All lift holes shall be plugged.

All pipes entering the sanitary sewer manhole shall be temporarily plugged, taking care to securely brace the pipes and plugs to prevent them from being drawn into the sanitary sewer manhole.

The test head shall be placed at the top of the sanitary sewer manhole in accordance with the Manufacturer’s recommendations.

A vacuum of 10-inches of mercury shall be drawn on the sanitary sewer manhole, the valve on the vacuum line of the test head closed, and the vacuum pump shut off. The time shall be measured for the vacuum to drop to 9-inches of mercury.

The sanitary sewer manhole shall pass if the time for the vacuum reading to drop from 10-inches of mercury to 9-inches of mercury meets or exceeds the values indicated in Sanitary Sewer Manhole Vacuum Test Table.

If the sanitary sewer manhole fails the initial test, necessary repairs shall be made by an approved method. The sanitary sewer manhole shall then be retested until a satisfactory test is obtained.

Sanitary Sewer Sanitary Vacuum Test Table

Minimum Test Times for Various Sanitary Sewer Sanitary Diameters in Seconds

<table>
<thead>
<tr>
<th>MH Inside Diameter, (inches)</th>
<th>48</th>
<th>60</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth, (ft)</td>
<td>Time, (seconds)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>26</td>
<td>33</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>33</td>
<td>41</td>
</tr>
<tr>
<td>12</td>
<td>30</td>
<td>39</td>
<td>49</td>
</tr>
<tr>
<td>14</td>
<td>35</td>
<td>46</td>
<td>57</td>
</tr>
<tr>
<td>16</td>
<td>40</td>
<td>52</td>
<td>67</td>
</tr>
<tr>
<td>18</td>
<td>45</td>
<td>59</td>
<td>73</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>65</td>
<td>81</td>
</tr>
<tr>
<td>22</td>
<td>55</td>
<td>72</td>
<td>89</td>
</tr>
<tr>
<td>24</td>
<td>59</td>
<td>78</td>
<td>97</td>
</tr>
<tr>
<td>26</td>
<td>64</td>
<td>85</td>
<td>105</td>
</tr>
<tr>
<td>28</td>
<td>69</td>
<td>91</td>
<td>113</td>
</tr>
</tbody>
</table>
Pipe Deflection Test: Deflection tests shall be performed by the Contractor on all PVC sanitary sewer mains. The Contractor shall provide and pull a BMU approved deflection gauge (mandrel) device through the sanitary sewer main after the sanitary sewer main backfilling has been completed. The diameter of the deflection gauge device shall be 95-percent of the un-deflected inside diameter of the flexible pipe. The Contractor shall be required to install the pipe in such a manner so that the diametric deflection of the pipe shall not exceed 5-percent. All pipes exceeding the 5-percent deflection within the corrective period (warranty period) shall be re-laid or replaced by the Contractor at no additional cost to the Owner. The Contractor shall be responsible for all restoration costs, including all streets, alleys, boulevards, etc.
4.0 METHOD OF MEASUREMENT AND BASIS OF PAYMENT

4.1 REMOVAL AND ABANDONING SANITARY SEWER PIPE AND SANITARY SEWER MANHOLES

Sanitary Sewer Main Removal: Removal of sanitary sewer pipe shall be measured as lineal foot of sanitary sewer pipe removed, unless otherwise noted. The removal footage shall be rounded up to the nearest 1-foot increment.

Payment for removal of sanitary sewer pipe shall be paid at the contract unit price for each foot of sanitary sewer pipe removed. Payment for removal of sanitary sewer pipe shall be full compensation for all disposal costs, labor, equipment, and incidentals necessary to complete the work.

Sanitary Manhole Removal: Removal of sanitary sewer manholes shall be measured as a unit for each sanitary sewer manhole removed. The frame and lid shall be salvaged and delivered to BMU at 525 Western Avenue by the Contractor, delivery of the frame and lid shall be incidental to the sanitary sewer manhole removal.

Payment for removal of sanitary sewer manhole shall be paid at the contract unit price for each sanitary sewer manhole removed. Payment for removal of sanitary sewer manhole shall be full compensation for frame & lid delivery to BMU, disposal costs, labor, equipment, and incidentals necessary to complete the work.

Abandon Sanitary Sewer Pipe: Abandoning sanitary sewer pipe shall be measured as cubic yards of K-Crete fill in the pipe. K-Crete shall be measured to the nearest 0.1 cubic yard.

Payment for K-Crete shall be paid at the contract unit price per cubic yard for K-Crete. Payment for abandoning sanitary sewer pipe shall be full compensation for filling the pipe with K-Crete, excavation for installing insertion holes for filling the K-Crete into the pipe, backfilling to finished grade elevation, labor, equipment, and incidentals necessary to complete the work.

Abandon Sanitary Sewer Manhole: Abandoning of a sanitary sewer manhole shall be measured as a unit for each sanitary sewer manhole abandoned. The frame and lid shall be salvaged and delivered to BMU at 525 Western Avenue by the Contractor, delivery of the frame and lid shall be incidental to the sanitary sewer manhole removal. If the required height is not specified, the sanitary sewer manhole shall be removed below final grade by a minimum of 4-feet.

Payment for abandoning a sanitary sewer manhole shall be paid at the contract unit price for each sanitary sewer manhole abandoned. Payment for abandoning a sanitary sewer manhole shall be full compensation for breaking the sanitary sewer manhole down to the required height, constructing a hole in the sanitary sewer manhole base section, furnishing and installing granular material in the sanitary sewer manhole (unless there is a Bid Item for this), backfilling to finished grade, frame & lid delivery to BMU, disposal costs, labor, equipment, and incidentals necessary to complete the work.
4.2 DEWATERING

No measurement or individual Bid Item payment will be made. Dewatering shall be considered incidental to the installation of the sanitary sewer main, sanitary sewer manholes, sanitary sewer services and appurtenances.

OR; as per Bid Form:

Dewatering for sanitary sewer main, sanitary sewer manholes and sanitary sewer services, shall be measured lump sum where trench dewatering is deemed necessary as an individual Bid Item on the Bid Form.

Payment will be at the contract lump sum price for dewatering methods furnished and installed. Payment shall be full compensation for discharge permits, pumps, dewatering wells, electrical source fees, power costs, materials, labor, equipment, and incidentals necessary to complete the work.

OR; as per Bid Form:

Dewatering for sanitary sewer main, sanitary sewer manholes and sanitary sewer services, shall be measured to the nearest lineal foot where trench dewatering is deemed necessary as an individual Bid Item on the Bid Form. Dewatering on a lineal foot basis shall be payable when dewatering wells are deemed necessary and utilized, not for utilizing smaller pumps in the trench.

Payment will be at the contract unit price per foot for dewatering methods furnished and installed. Payment shall be full compensation for discharge permits, pumps, dewatering wells, electrical source fees, power costs, materials, labor, equipment, and incidentals necessary to complete the work.

4.3 GRANULAR MATERIAL (TRENCH STABILIZATION, BEDDING, SELECT FILL)

Granular material furnished, transported, placed and compacted into place shall be measured as tons of granular material to the nearest 0.1-ton, unless pipe bedding is noted incidental to the pipe installation.

Payment for granular material shall be paid at the contract unit price per ton. Payment for granular material will be full compensation for furnishing, transporting, placing, compacting, labor, equipment, and incidentals necessary to complete the work.

4.4 K-CRETE

K-Crete furnished and installed shall be measured as cubic yards of K-Crete to the nearest 0.1-cu. yd.

Payment for K-Crete will be paid for at the contract unit price for K-Crete. Payment for K-Crete will be full compensation for furnishing and pouring K-Crete, labor, equipment, and incidentals necessary to complete the work.
4.5 **SANITARY SEWER MAIN**

Sanitary Sewer Main: Sanitary sewer main shall be measured by the lineal foot for each type and size of pipe furnished and installed. Piping shall be measured from end to end with no deduction for length through sanitary sewer manholes. Where two or more pipes of different size enter a sanitary sewer manhole, each pipe will be measured to the center of the sanitary sewer manhole. The measured length shall be rounded up to the nearest 1-foot increment.

Payment for sanitary sewer main will be at the contract unit price per lineal foot and will be full compensation for all materials, dewatering (unless there is a Bid Item for this), excavation, backfilling, testing, materials, labor, equipment, and incidentals necessary to complete the work.

Extra Depth Sanitary Sewer Main: No measurement or individual Bid Item payment will be made for extra depth sewer main unless otherwise noted on the Bid Form.

4.6 **SANITARY SEWER FORCE MAIN**

Sanitary sewer force main shall be measured by the lineal foot for each type and size of pipe furnished and installed. Piping shall be measured from end to end with no deduction for length to the center of the sanitary sewer manholes. The measured length shall be rounded up to the nearest 1-foot increment.

Payment for sanitary sewer force main will be at the contract unit price per lineal foot and will be full compensation for all materials, dewatering (unless there is a Bid Item for this), excavation, backfilling, testing, tracer wire system with terminal boxes and ground rods, materials, labor, equipment, and incidentals necessary to complete the work.

4.7 **SANITARY SEWER COUplings**

Sanitary sewer couplings shall be measured by each type and size of coupling furnished and installed.

Payment will be at the contract unit price per each type and size of coupling. Payment for couplings shall full compensation for bands, pipe, materials, labor, equipment, and incidentals necessary to complete the work.

4.8 **SANITARY SEWER WYE/TAP**

Sanitary sewer wyes and taps shall be per each type and size of sanitary sewer wye or tap furnished and installed. If an existing sanitary sewer main is required to be tapped by BMU Personnel, an applicable tapping fee will be required.

Payment will be at the contract unit price per each type and size of sanitary sewer wyes and taps. Payment for wyes or taps shall full compensation for gaskets, bands, cutting of pipe openings, materials, labor, equipment, and incidentals necessary to complete the work.
4.9 SANITARY SEWER CAPS/PLUGS
Sanitary sewer caps/plugs shall be measured by each type and size of cap or plug furnished and installed.
Payment will be at the contract unit price per each type and size of sanitary sewer caps/plugs. Payment for sanitary sewer caps/plugs shall full compensation for materials, labor, equipment, and incidentals necessary to complete the work.

4.10 SPOT REPAIR FOR SANITARY SEWER
Spot repair for sanitary sewer main shall be measured by each spot repair required.
Payment will be at the contract unit price per each spot repair. Payment for spot repair shall full compensation for trench excavation and backfill, removal of defective pipe section, pipe section, coupling, materials, labor, equipment, and incidentals necessary to complete the work.

4.11 PIPE LINING REPAIR FOR SANITARY SEWER MAIN
Pipe lining repair for sanitary sewer main shall be measured by each pipe lining repair furnished and installed.
Payment will be at the contract unit price per each pipe lining repair required.
Payment for couplings shall full compensation for pipe cleaning, pre-inspection, liner repair, post-inspection, materials, labor, equipment, and incidentals necessary to complete the work.

4.12 CONNECTION INTO EXISTING SANITARY SEWER MANHOLE
Connections into existing sanitary sewer manholes shall be measured by each connection which doesn’t already have a pipe penetration with a resilient connector or boot.
Payment will be at the contract unit price per each connection required. Payment for connection shall full compensation for core drilling the sanitary sewer manhole, sanitary sewer manhole boot, grout, water seals, liner repair (if manhole is lined), materials, labor, equipment, and incidentals necessary to complete the work.

4.13 SANITARY SEWER MANHOLE
Sanitary sewer manholes shall be measured per each manhole, by inside nominal diameter, furnished and installed. Sanitary sewer manholes shall be a complete sanitary sewer manhole with all appurtenances such as bench and inverts, HDPE adjustment rings, frame and cover, and external frame seal. Inside drop assembly, if required, shall be a separate Bid Item, unless otherwise noted.
Payment will be at the contract unit price per each inside diameter size manhole. Payment for sanitary sewer manholes shall full compensation for gaskets or butyl rubber rope sealant between manhole sections, bench and inverts, resilient (boot) connectors, HDPE adjustment rings, frame and cover, external frame seal, materials, labor, equipment, and incidentals necessary to complete the work.
4.14 LINED SANITARY SEWER MANHOLE

Lined sanitary sewer manholes shall be measured per each lined manhole, by inside nominal diameter, furnished and installed. Lined sanitary sewer manholes shall be a complete sanitary sewer manhole with all appurtenances such as bench and inverts, HDPE adjustment rings, frame and cover, and external frame seal. Inside drop assembly, if required, shall be a separate Bid Item, unless otherwise noted.

Payment will be at the contract unit price per each inside diameter size lined manhole. Payment for lined sanitary sewer manholes shall full compensation for lining the sanitary sewer manhole, welding lining joints, gaskets or butyl rubber rope sealant between manhole sections, bench and inverts, resilient (boot) connectors, HDPE adjustment rings, frame and cover, external frame seal, materials, labor, equipment, and incidentals necessary to complete the work.

4.15 INSIDE DROP ASSEMBLY FOR SANITARY SEWER MANHOLE

Inside drop assembly for sanitary sewer manholes shall be measured as per each inside drop assembly, by inside nominal diameter, furnished and installed in sanitary sewer manholes.

Payment will be at the contract unit price per each inside drop assembly for sanitary sewer manholes. Payment for inside drop assembly shall full compensation for bowl, pipe, fittings, clamping brackets, setting the drop section in concrete in the bottom of the sanitary sewer manhole, materials, labor, equipment, and incidentals necessary to complete the work.

4.16 LINING EXISTING SANITARY SEWER MANHOLE

Lining an existing sanitary sewer manhole shall be measured as per each manhole lined, by inside nominal diameter, furnished and installed in sanitary sewer manholes.

Payment will be at the contract unit price per each existing sanitary sewer manhole lined. Payment for lining an existing sanitary sewer manhole shall full compensation for cleaning the existing sanitary sewer manhole, lining the existing sanitary sewer manhole, materials, labor, equipment, and incidentals necessary to complete the work.
4.17 **SANITARY SEWER SERVICE**

Sanitary sewer service shall be per each type and size of sanitary sewer service furnished and installed. Sanitary sewer service installation will normally be from the sanitary sewer main to the property line. Refer to section 2.3 for sanitary sewer service tapping fee costs and info.

Payment will be at the contract unit price per each type and size of sanitary sewer service. Payment shall be full compensation for sanitary sewer service pipe, cap, stub marker, materials, labor, equipment, and incidentals necessary to complete the work.

OR; as per Bid Form:

Sanitary sewer service pipe shall be measured to the nearest lineal foot for each type and size of sanitary sewer service pipe installed. Measurement will normally be from the sanitary sewer main to the property line. The measured length shall be rounded up to the nearest 1-foot increment. Refer to section 2.3 for sanitary sewer service tapping fee costs and info.

Payment will be at the contract unit price per foot for sanitary sewer service pipe. Payment shall be full compensation for sanitary sewer service pipe, cap, stub marker, materials, labor, equipment, and incidentals necessary to complete the work.

4.18 **SANITARY SEWER SERVICE RISER**

Sanitary sewer service risers shall be per each size of sanitary sewer service riser furnished and installed. Sanitary sewer service riser installation will normally be from the sanitary sewer main to the property line.

Payment will be at the contract unit price per each type and size of sanitary sewer service riser. Payment for the sanitary sewer service riser will be full compensation for sanitary sewer service pipe, bends, cap, stub marker, materials, labor, equipment, and incidentals necessary to complete the work.

OR; as per Bid Form:

Sanitary sewer service riser pipe shall be measured to the nearest lineal foot for each size of sanitary sewer service pipe installed. Measurement will normally be from the sanitary sewer main to the property line. The measured length shall be rounded up to the nearest 1-foot increment.

Payment will be at the contract unit price per foot for sanitary sewer service pipe. Payment for the sanitary sewer service pipe will be full compensation for sanitary sewer service pipe, bends, cap, stub marker, materials, labor, equipment, and incidentals necessary to complete the work.
4.19 SANITARY SEWER SERVICE CLEANOUT ASSEMBLY
SANITARY SEWER SERVICE CLEANOUT ASSEMBLY
Sanitary sewer service cleanout assembly shall be for each size of sanitary sewer service cleanout assembly furnished and installed.
Payment will be at the contract unit price per each size of sanitary sewer cleanout assembly. Payment shall be full compensation sanitary sewer cleanout assembly pipe, bends, protective covers, materials, labor, equipment, and incidentals necessary to complete the work.

4.20 SANITARY SEWER SERVICE RECONNECT
SANITARY SEWER SERVICE RECONNECT
(Reconnecting sanitary sewer service lines where new main line sanitary sewer pipe is installed to replace existing main line sanitary sewer pipe)
Sanitary sewer service reconnect shall be for each size of sanitary sewer service reconnect furnished and installed. A temporary sanitary sewer service reconnect may be required if the permanent sanitary sewer service reconnect is to performed at the property line, and shall be included in the sanitary sewer service reconnect Bid Item.
Payment will be at the contract unit price per each size of sanitary sewer reconnect. Payment shall be full compensation sanitary sewer pipe, bends, fittings, coupling, materials, labor, equipment, and incidentals necessary to complete the work.

4.21 TEMPORARY SANITARY SEWER BYPASS SYSTEM
TEMPORARY SANITARY SEWER BYPASS SYSTEM
Temporary sanitary sewer bypass system shall include furnishing and installing a complete temporary sanitary sewer bypass system with all pumping apparatus and full-time monitoring of the pumping system when it is in use.
Payment will be at the contract lump sum price for a temporary sanitary sewer bypass system. Payment will be full compensation for providing project design requirements for Engineer approval, installing duplex pumping apparatus, bypass piping, apparatus required for confined space entry, fuel and/or temporary electric hook-up, hydrotecting discharge pipe, full-time monitoring of the pump system when it is in use, plugging existing sanitary sewer manholes utilized for bypass sump connections, temporary sumps with piping, burying or ramping discharge piping for access requirements, discharge pipe flushing, temporary bypass system removal, sanitary sewer manhole repairs, water seals, non-shrink grouting, materials, labor, equipment, and incidentals necessary to complete the work.

4.22 CASING PIPE VIA BORING (JACKING)
CASING PIPE VIA BORING (JACKING)
Casing pipe with carrier pipe shall be measured by the lineal foot for casing pipe with carrier pipe supported by casing spacers and capped with end seals, all furnished and installed. The measured length of carrier pipe and casing pipe shall be rounded up to the nearest 1-foot increment.
Payment will be at the contract unit price per lineal foot for the type and size of casing pipe with carrier pipe. Payment for casing pipe with carrier pipe shall be full compensation for excavating and backfilling of bore pits, bore pit dewatering, casing pipe by boring or jacking, welding, carrier pipe supported by casing spacers, end seals, materials, labor, equipment, and incidentals necessary to complete the work.